22 research outputs found

    Some Simple Conjugates of Virginiamycin and Their Bioactivity

    No full text

    [Bacterial-ribosomes - Structure and Functions]

    No full text

    Action of Ions and Ph On the Binding of Virginiamycin-s To Ribosomes

    No full text

    [Antibiotics Inhibiting Protein-synthesis]

    No full text

    The Role of Ribosomal-rna Bases in the Interaction of Peptidyltransferase Inhibitors With Bacterial-ribosomes

    No full text
    Synergism of streptogramins A (virginiamycin M, VM) and B (virginiamycin S, VS), peptidyltransferase inhibitors, was explored in EM4/pLC7-21 (wild type) and EM4/pERY (VS-resistant). These bacterial strains contained multicopy plasmids carrying an rrnH operon with wild type (pLC7-21) or mutated (A2058 --> U transversion) 23 S rRNA gene. Ribosomes with wild type and mutated rRNA were both present in EM4/pERY. The latter particles did not bind VS; in the presence of VM, however, high affinity VS binding occurred. As shown previously, VS protected against chemical reagents certain bases in domain V rRNA and VM in the stems flanking this loop. Differences between wild type and mutant ribosomes were observed: A2058, A2059, A2062, and G2505, protected by VS and ERY in EM4/pLC7-21, were unshielded in EM4/pERY. A2062 was shielded by VM in EM4/pERY, not in EM4/pLC7-21, and G2505 of mutant ribosomes became protected by VS when VM was simultaneously present. Induction by VM of a high affinity VS binding site in VS-sensitive and -resistant ribosomes indicates A2058 mutation to entail a conformational change of this site, which is counteracted by VM fixation. Accessibility of A2062 to chemical reagents (unlike behavior of EM4/pERY and EM4/pLC7-21 in the presence of VM) implies different conformations for wild type and mutant ribosomes
    corecore