2 research outputs found

    Vascular tissue specific mirna profiles reveal novel correlations with risk factors in coronary artery disease

    Get PDF
    Funding Information: Acknowledgments: We wish to thank all individuals donating cardiovascular relevant tissue and data. We would like to thank the surgeons of the Department of Cardiovascular Surgery and the KaBi-DHM (Cardiovascular Biobank of the German Heart Center) for collecting the surgical specimens. We further wish to thank the German Centre for Cardiovascular Research (DZHK) for financial support, the technical assistance team (Nicole Beck, Ulrike Weiß and Susanne Blachut) for wet lab and sequencing support. M.v.S. reported support by the Clinician Scientist Excellence Program of the DZHK, the German Society of Cardiology (DGK), the German Heart Foundation (Deutsche Herzstiftung e.V.), the Fondation Leducq (PlaqOmics) and the Corona Foundation (Junior Research Group Cardiovascular Diseases). Further, support was provided within the framework of DigiMed Bayern (www.digimed-bayern.de) funded by the Bavarian State Ministry of Health and Care and the Bavarian State Ministry of Science and the Arts through the DHM-MSRM Joint Research Center. Figures were prepared based on a BioRender’s Academic License using BioRender https://biorender.com/. Funding Information: Funding: Supported by the German Centre for Cardiovascular Research (DZHK), grant number 81X2100144 and by the BMBF (German Ministry of Education and Research). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microR-NAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs–miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701–significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.Peer reviewe

    Validation of the 30-year Framingham Risk Score in a German population-based cohort.

    No full text
    The Framingham Risk Score to predict 30-year risk (FRS30y) of cardiovascular disease (CVD) constitutes an important tool for long-term risk prediction. However, due to its complex statistical properties and the paucity of large population-based cohorts with appropriate data, validation of the FRS30y is lacking. A population-based cohort from Southern Germany (N = 3110, 1516 (48.7%) women) was followed up for a median time of 29.5 [18.7, 31.2] years. Discrimination and calibration were assessed for the original, recalibrated and refitted FRS30y version. During follow up, 620 incident CVD events (214 in women) occurred. The FRS30y showed adequate discrimination (original and recalibrated version: Area under the curve (AUC): 78.4 for women and 74.9 for men) but overestimated actual CVD risk (original version: discordance 45.4% for women and 37.3% for men, recalibrated version: 37.6% and 28.6%, respectively). Refitting showed substantial improvement in neither discrimination nor calibration. The performance of FRS30y is adequate for long-term CVD risk prediction and could serve as an important tool in risk communication, especially for younger audiences
    corecore