7 research outputs found

    Scattering of conformal higher spin fields

    Get PDF
    We develop a formalism for describing the most general notion of tree-level scattering amplitudes in 4d conformal higher spin theory. As conformal higher spin fields obey higher-derivative equations of motion, there are many distinct on-shell external states which may contribute to their scattering, some of which grow polynomially with time, leading to ill-defined amplitudes. We characterize the set of admissible scattering states which produce finite tree amplitudes, noting that there are more such states than just standard massless higher spins obeying two-derivative equations of motion. We use conformal gravity as a prime example, where the set of scattering states includes the usual Einstein graviton and a `ghost' massless spin 1 particle. An extension of the usual spinor helicity formalism allows us to encode these scattering states efficiently in terms of `twistor-spinors'. This leads to compact momentum space expressions for all finite tree-level 3-point amplitudes of conformal higher spin theory. While some of these 3-point amplitudes vanish (including all those with only standard two-derivative higher spin external states), there are many others which are non-vanishing. We also comment on the generalization to scattering of conformal higher spins in AdS4_4.Comment: 40 pages, no figures. v2: references adde

    Paxillus

    No full text
    Abstract is not availabl

    Heart Block

    No full text

    Lichen conservation in North America: a review of current practices and research in Canada and the United States

    No full text

    Animal’s Functional Role in the Landscape

    No full text
    corecore