2 research outputs found
Chloroplast genome of Corydalis impatiens (Pall.) Fisch. ex DC. (Papaveraceae), a Tibetan medical herb
Corydalis impatiens (Pall.) Fisch. 1821. (Papaveraceae) is a Tibetan medical herb used to reduce pain, treat skin injuries, cure hepatitis, and benefit the circulatory system. In the current study, the chloroplast genome of C. impatiens was sequenced. This complete genome is a circular 197,317 bp sequence consisting of a small single-copy (SSC, 3105 bp) region, a large single-copy (LSC, 89,790 bp) region, and a pair of inverted repeats (IRs, 52,211 bp). This chloroplast genome encodes a total of 127 functional genes, including 81 protein-coding, 38 transfer RNA, and eight ribosomal RNA genes. Furthermore, this chloroplast genome contains six pseudogenes, including a pair of ndhB a pair of ndhD, one ndhC, and one ndhK. The phylogenetic relationship within the genus Corydalis was inferred with the maximum-likelihood method, and the result showed that C. impatiens was most closely related to C. conspersa
The chromosome-scale assembly of the Notopterygium incisum genome provides insight into the structural diversity of coumarins
Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2′-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins