62 research outputs found

    Optimal renormalization and the extraction of the strange quark mass from moments of the τ\tau-decay spectral function

    Full text link
    We introduce an optimal renormalization group analysis pertinent to the analysis of polarization functions associated with the ss-quark mass relevant in τ\tau-decay. The technique is based on the renormalization group invariance constraints which lead to closed form summation of all the leading and next-to-leading logarithms at each order in perturbation theory. The new perturbation series exhibits reduced sensitivity to the renormalization scale and improved behavior in the complex plane along the integration contour. Using improved experimental and theory inputs, we have extracted the value of the strange quark mass ms(2GeV)=106.70±9.36 MeVm_s(2{\rm GeV}) = 106.70 \pm 9.36~{\rm MeV} and ms(2GeV)=74.47±7.77 MeVm_s(2{\rm GeV}) = 74.47 \pm 7.77~{\rm MeV} from presently available ALEPH and OPAL data respectively. These determinations are in agreement with the determinations in other phenomenological methods and from the lattice.Comment: 12 pages, 4 tables, 7 figures, v2 corresponds to version to appear in Physical Review

    Electromagnetic charge radius of the pion at high precision

    Full text link
    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for ππ\pi\pi elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+ee^+e^--annihilation and τ\tau-decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte-Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is r_\pi=(0.657 \pm 0.003) \fm , which amounts to an increase in precision by a factor of about 2.7 compared to the PDG average.Comment: 6 pages, 2 figures, typos corrected, citations added, version accepted for publication in Physical Review Letter

    Parametrization-free determination of the shape parameters for the pion electromagnetic form factor

    Full text link
    Recent data from high statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t=0t=0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the ππ\pi\pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65GeV0.65 \,{\rm GeV}, we obtain, with no specific parametrization, the prediction for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t=0t=0, with a strong correlation among them.Comment: v2 is 11 pages long using EPJ style files, and has 8 figures; Compared to v1, number of figures has been reduced, discussion has been improved significantly, minor errors have been corrected, references have added, and the manuscript has been significantly revised; this version has been accepted for publication in EPJ
    corecore