39 research outputs found

    Laser modification of graphene oxide layers

    Get PDF
    The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density

    Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O-3 ceramics

    No full text
    A-site deficient rare-earth doped barium zirconate titanate (BZT) ceramics (Ba1−yLn2y/3)Zr0.09Ti0.91O3 (Ln = La, Pr, Nd, Gd) are obtained by a modified solid-state reaction method. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data. Morphological analysis on sintered samples shows that the addition of rare-earth ions inhibits the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on phase transition and dielectric properties is analyzed. A dramatic fall in the transition temperature occurs when BZT ceramic is doped with rare-earths. Moreover, diffusivity degree of the phase transition increases and a relaxor-type behaviour is induced due to both the increment of the lanthanide content and the increase of the ionic radius of the dopant element. High values of dielectric tunability are obtained for lanthanum doped BZT. A direct relation between transition temperature and tunability is discussed. Conclusively, low permittivity and high tunability materials can be obtained by the adequate substitution of rare-earths into BZT ceramics

    Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Nd, Gd) doped Ba(Zr0.09Ti0.91)O-3 ceramics

    No full text
    A-site deficient rare-earth doped barium zirconate titanate (BZT) ceramics (Ba1−yLn2y/3)Zr0.09Ti0.91O3 (Ln = La, Pr, Nd, Gd) are obtained by a modified solid-state reaction method. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data. Morphological analysis on sintered samples shows that the addition of rare-earth ions inhibits the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on phase transition and dielectric properties is analyzed. A dramatic fall in the transition temperature occurs when BZT ceramic is doped with rare-earths. Moreover, diffusivity degree of the phase transition increases and a relaxor-type behaviour is induced due to both the increment of the lanthanide content and the increase of the ionic radius of the dopant element. High values of dielectric tunability are obtained for lanthanum doped BZT. A direct relation between transition temperature and tunability is discussed. Conclusively, low permittivity and high tunability materials can be obtained by the adequate substitution of rare-earths into BZT ceramics

    Functionalization of Carbon Spheres with a Porphyrin−Ferrocene Dyad

    Get PDF
    Meso-tetraphenylporphyrin connected with a ferrocene molecule in the beta-position of the macrocycle through a triple carbon−carbon bond has been bound to carbon spheres using the Prato−Maggini reaction. The ethynyl or/and phenylene ethynylene subunits were chosen as a linking bridge to give a high conjugation degree between the donor (i. e., ferrocene), the photoactive compound (i. e., porphyrin), and the acceptor (i. e., carbon spheres). The molecular bridges have been directly linked to the beta-pyrrole positions of the porphyrin ring, generating a new example of a long-range donor−acceptor system. Steady-state fluorescence studies together with Raman and XPS measurements helped understanding the chemical and physical properties of the porphyrin ring in the new adduct. The spectroscopic characteristics were also compared with those obtained from a similar compound bearing fullerene instead of carbon spheres
    corecore