8,511 research outputs found
Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard
This article presents experimental results on properties of waves propagating
in an unbounded and a bounded photonic crystal consisting of metallic cylinders
which are arranged in a triangular lattice. First, we present transmission
measurements of plane waves traversing a photonic crystal. The experiments are
performed in the vicinity of a Dirac point, i.e., an isolated conical
singularity of the photonic band structure. There, the transmission shows a
pseudodiffusive 1/L dependence, with being the thickness of the crystal, a
phenomenon also observed in graphene. Second, eigenmode intensity distributions
measured in a microwave analog of a relativistic Dirac billiard, a rectangular
microwave billiard that contains a photonic crystal, are discussed. Close to
the Dirac point states have been detected which are localized at the straight
edge of the photonic crystal corresponding to a zigzag edge in graphene
Static axisymmetric spacetimes with non-generic world-line SUSY
The conditions for the existence of Killing-Yano tensors, which are closely
related to the appearance of non-generic world-line SUSY, are presented for
static axisymmetric spacetimes. Imposing the vacuum Einstein equation, the set
of solutions admitting Killing-Yano tensors is considered. In particular, it is
shown that static, axisymmetric and asymptotically flat vacuum solutions
admitting Killing-Yano tensors are only the Schwarzschild solution.Comment: 10 pages (RevTeX), TIT/HEP-253/COSMO-4
Application of a trace formula to the spectra of flat three-dimensional dielectric resonators
The length spectra of flat three-dimensional dielectric resonators of
circular shape were determined from a microwave experiment. They were compared
to a semiclassical trace formula obtained within a two-dimensional model based
on the effective index of refraction approximation and a good agreement was
found. It was necessary to take into account the dispersion of the effective
index of refraction for the two-dimensional approximation. Furthermore, small
deviations between the experimental length spectrum and the trace formula
prediction were attributed to the systematic error of the effective index of
refraction approximation. In summary, the methods developed in this article
enable the application of the trace formula for two-dimensional dielectric
resonators also to realistic, flat three-dimensional dielectric microcavities
and -lasers, allowing for the interpretation of their spectra in terms of
classical periodic orbits.Comment: 13 pages, 12 figures, 1 tabl
Spectral properties of Bunimovich mushroom billiards
Properties of a quantum mushroom billiard in the form of a superconducting
microwave resonator have been investigated. They reveal unexpected nonuniversal
features such as, e.g., a supershell effect in the level density and a dip in
the nearest-neighbor spacing distribution. Theoretical predictions for the
quantum properties of mixed systems rely on the sharp separability of phase
space - an unusual property met by mushroom billiards. We however find
deviations which are ascribed to the presence of dynamic tunneling.Comment: 4 pages, 7 .eps-figure
Experimental Observation of Localized Modes in a Dielectric Square Resonator
We investigated the frequency spectra and field distributions of a dielectric
square resonator in a microwave experiment. Since such systems cannot be
treated analytically, the experimental studies of their properties are
indispensable. The momentum representation of the measured field distributions
shows that all resonant modes are localized on specific classical tori of the
square billiard. Based on these observations a semiclassical model was
developed. It shows excellent agreement with all but a single class of measured
field distributions that will be treated separately.Comment: 6 pages, 5 figures, 1 tabl
Nonperiodic echoes from mushroom billiard hats
Mushroom billiards have the remarkable property to show one or more clear cut
integrable islands in one or several chaotic seas, without any fractal
boundaries. The islands correspond to orbits confined to the hats of the
mushrooms, which they share with the chaotic orbits. It is thus interesting to
ask how long a chaotic orbit will remain in the hat before returning to the
stem. This question is equivalent to the inquiry about delay times for
scattering from the hat of the mushroom into an opening where the stem should
be. For fixed angular momentum we find that no more than three different delay
times are possible. This induces striking nonperiodic structures in the delay
times that may be of importance for mesoscopic devices and should be accessible
to microwave experiments.Comment: Submitted to Phys. Rev. E without the appendi
Classical gravitational spin-spin interaction
I obtain an exact, axially symmetric, stationary solution of Einstein's
equations for two massless spinning particles. The term representing the
spin-spin interaction agrees with recently published approximate work. The
spin-spin force appears to be proportional to the inverse fourth power of the
coordinate distance between the particles.Comment: six pages, no figures, journal ref:accepted for Classical and Quantum
Gravit
- …