1,000 research outputs found

    Knowledge-rich Image Gist Understanding Beyond Literal Meaning

    Full text link
    We investigate the problem of understanding the message (gist) conveyed by images and their captions as found, for instance, on websites or news articles. To this end, we propose a methodology to capture the meaning of image-caption pairs on the basis of large amounts of machine-readable knowledge that has previously been shown to be highly effective for text understanding. Our method identifies the connotation of objects beyond their denotation: where most approaches to image understanding focus on the denotation of objects, i.e., their literal meaning, our work addresses the identification of connotations, i.e., iconic meanings of objects, to understand the message of images. We view image understanding as the task of representing an image-caption pair on the basis of a wide-coverage vocabulary of concepts such as the one provided by Wikipedia, and cast gist detection as a concept-ranking problem with image-caption pairs as queries. To enable a thorough investigation of the problem of gist understanding, we produce a gold standard of over 300 image-caption pairs and over 8,000 gist annotations covering a wide variety of topics at different levels of abstraction. We use this dataset to experimentally benchmark the contribution of signals from heterogeneous sources, namely image and text. The best result with a Mean Average Precision (MAP) of 0.69 indicate that by combining both dimensions we are able to better understand the meaning of our image-caption pairs than when using language or vision information alone. We test the robustness of our gist detection approach when receiving automatically generated input, i.e., using automatically generated image tags or generated captions, and prove the feasibility of an end-to-end automated process

    Entity relatedness for retrospective analyses of global events

    Get PDF
    Tracking global events through time would ease many diachronic analyses which are currently carried out manually by social scientists. While entity linking algorithms can be adapted to track events that go by a common name, such a name is often not established in early stages leading up to the event. This study evaluates the utility of entity relatedness for the task of identifying related entities and textual resources that describe the involvement of the entity in the event. In a small study we find that simple relatedness methods obtain MAP score of 0.74 outperforming many advanced baseline systems such as Stics and Wiki2Vec. A small adaptation of this method provides sufficient explanations of entity involvement or 68% of relevant entities

    Selbstdarstellungskultur in der massenmedialen Gesellschaft

    Get PDF

    Building Entity-Centric Event Collections

    Full text link
    Web archives preserve an unprecedented abundance of materials regarding major events and transformations in our society. In this paper, we present an approach for building event-centric sub-collections from such large archives, which includes not only the core documents related to the event itself but, even more importantly, documents describing related aspects (e.g., premises and consequences). This is achieved by 1) identifying relevant concepts and entities from a knowledge base, and 2) detecting their mentions in documents, which are interpreted as indicators for relevance. We extensively evaluate our system on two diachronic corpora, the New York Times Corpus and the US Congressional Record, and we test its performance on the TREC KBA Stream corpus, a large and publicly available web archive

    Finding relevant relations in relevant documents

    Full text link
    This work studies the combination of a document retrieval and a relation extraction system for the purpose of identifying query-relevant relational facts. On the TREC Web collection, we assess extracted facts separately for correctness and relevance. Despite some TREC topics not being covered by the relation schema, we find that this approach reveals relevant facts, and in particular those not yet known in the knowledge base DBpedia. The study confirms that mention frequency, document relevance, and entity relevance are useful indicators for fact relevance. Still, the task remains an open research problem

    Enhancing domain-specific entity linking in DH

    Get PDF
    • …
    corecore