211 research outputs found

    Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers

    Full text link
    The effect of tunneling on the transport properties of} quantum Hall double layers in the regime of the excitonic condensate at total filling factor one is studied in counterflow experiments. If the tunnel current II is smaller than a critical ICI_C, tunneling is large and is effectively shorting the two layers. For I>ICI > I_C tunneling becomes negligible. Surprisingly, the transition between the two tunneling regimes has only a minor impact on the features of the filling-factor one state as observed in magneto-transport, but at currents exceeding ICI_C the resistance along the layers increases rapidly

    Acoustic Measurements of the Stripe and the Bubble Quantum Hall Phases

    Full text link
    We launch surface acoustic waves (SAW) along both the andthe and the directions of a Hall bar and measure the anisotropic conductivity in a high purity GaAs 2-D electron system in the Quantum Hall regime of the stripe and the bubble phases. In the anisotropic stripe phase, SAW propagating along the "easy" directionsenseacompressiblebehavior(finiteresistance)whichisseeninstandardtransportmeasurementonlyifcurrentflowsalongthe"hard" direction sense a compressible behavior (finite resistance) which is seen in standard transport measurement only if current flows along the "hard" direction. In the isotropic bubble phase, the SAW data show compressible behavior in both directions, in marked contrast to the incompressible quantum Hall behavior seen in transport measurements. These results challenge models that assume that both the stripe and the bubble phase consist of incompressible domains and raise important questions about the role of domain boundaries in SAW propagation.Comment: Published version from New Journal of Physic

    Anomalous resistance overshoot in the integer quantum Hall effect

    Get PDF
    In this work we report experiments on defined by shallow etching narrow Hall bars. The magneto-transport properties of intermediate mobility two-dimensional electron systems are investigated and analyzed within the screening theory of the integer quantized Hall effect. We observe a non-monotonic increase of Hall resistance at the low magnetic field ends of the quantized plateaus, known as the overshoot effect. Unexpectedly, for Hall bars that are defined by shallow chemical etching the overshoot effect becomes more pronounced at elevated temperatures. We observe the overshoot effect at odd and even integer plateaus, which favor a spin independent explanation, in contrast to discussion in the literature. In a second set of the experiments, we investigate the overshoot effect in gate defined Hall bar and explicitly show that the amplitude of the overshoot effect can be directly controlled by gate voltages. We offer a comprehensive explanation based on scattering between evanescent incompressible channels.Comment: 7 pages and 5 figure

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    Stable Branched Electron Flow

    Full text link
    The pattern of branched electron flow revealed by scanning gate microscopy shows the distribution of ballistic electron trajectories. The details of the pattern are determined by the correlated potential of remote dopants with an amplitude far below the Fermi energy. We find that the pattern persists even if the electron density is significantly reduced such that the change in Fermi energy exceeds the background potential amplitude. The branch pattern is robust against changes in charge carrier density, but not against changes in the background potential caused by additional illumination of the sample.Comment: Accepted for publication in New Journal of Physic
    • …
    corecore