176 research outputs found

    Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers

    Full text link
    The effect of tunneling on the transport properties of} quantum Hall double layers in the regime of the excitonic condensate at total filling factor one is studied in counterflow experiments. If the tunnel current II is smaller than a critical ICI_C, tunneling is large and is effectively shorting the two layers. For I>ICI > I_C tunneling becomes negligible. Surprisingly, the transition between the two tunneling regimes has only a minor impact on the features of the filling-factor one state as observed in magneto-transport, but at currents exceeding ICI_C the resistance along the layers increases rapidly

    Acoustic Measurements of the Stripe and the Bubble Quantum Hall Phases

    Full text link
    We launch surface acoustic waves (SAW) along both the andthe and the directions of a Hall bar and measure the anisotropic conductivity in a high purity GaAs 2-D electron system in the Quantum Hall regime of the stripe and the bubble phases. In the anisotropic stripe phase, SAW propagating along the "easy" directionsenseacompressiblebehavior(finiteresistance)whichisseeninstandardtransportmeasurementonlyifcurrentflowsalongthe"hard" direction sense a compressible behavior (finite resistance) which is seen in standard transport measurement only if current flows along the "hard" direction. In the isotropic bubble phase, the SAW data show compressible behavior in both directions, in marked contrast to the incompressible quantum Hall behavior seen in transport measurements. These results challenge models that assume that both the stripe and the bubble phase consist of incompressible domains and raise important questions about the role of domain boundaries in SAW propagation.Comment: Published version from New Journal of Physic

    Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well

    Full text link
    Direct electron spin resonance (ESR) on a high mobility two dimensional electron gas in a single AlAs quantum well reveals an electronic gg-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin orbit-interaction and a modulation of the electron wavevector caused by the microwave electric field. This contrasts markedly to conventional ESR that detects through the microwave magnetic field.Comment: 4 pages, 4 figure

    Coulomb Drag as a Probe of the Nature of Compressible States in a Magnetic Field

    Full text link
    Magneto-drag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At \nu=3/2 a clear T^{4/3} dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.Comment: 5 pages, 4 figure

    Josephson-like tunnel resonance and large Coulomb drag in GaAs-based electron-hole bilayers

    Full text link
    Bilayers consisting of two-dimensional (2D) electron and hole gases separated by a 10 nm thick AlGaAs barrier are formed by charge accumulation in epitaxially grown GaAs. Both vertical and lateral electric transport are measured in the millikelvin temperature range. The conductivity between the layers shows a sharp tunnel resonance at a density of 1.1⋅1010 cm−21.1 \cdot 10^{10} \text{ cm}^{-2}, which is consistent with a Josephson-like enhanced tunnel conductance. The tunnel resonance disappears with increasing densities and the two 2D charge gases start to show 2D-Fermi-gas behavior. Interlayer interactions persist causing a positive drag voltage that is very large at small densities. The transition from the Josephson-like tunnel resonance to the Fermi-gas behavior is interpreted as a phase transition from an exciton gas in the Bose-Einstein-condensate state to a degenerate electron-hole Fermi gas
    • …
    corecore