3 research outputs found

    Entangled photon apparatus for the undergraduate laboratory

    Full text link
    We present detailed instructions for constructing and operating an apparatus to produce and detect polarization-entangled photons. The source operates by type-I spontaneous parametric downconversion in a two-crystal geometry. Photons are detected in coincidence by single-photon counting modules and show strong angular and polarization correlations. We observe more than 100 entangled photon pairs per second. A test of a Bell inequality can be performed in an afternoon.Comment: 6 pages, 9 figure

    Entangled photons, nonlocality and Bell inequalities in the undergraduate laboratory

    Full text link
    We use polarization-entangled photon pairs to demonstrate quantum nonlocality in an experiment suitable for advanced undergraduates. The photons are produced by spontaneous parametric downconversion using a violet diode laser and two nonlinear crystals. The polarization state of the photons is tunable. Using an entangled state analogous to that described in the Einstein-Podolsky-Rosen ``paradox,'' we demonstrate strong polarization correlations of the entanged photons. Bell's idea of a hidden variable theory is presented by way of an example and compared to the quantum prediction. A test of the Clauser, Horne, Shimony and Holt version of the Bell inequality finds S=2.307±0.035S = 2.307 \pm 0.035, in clear contradiciton of hidden variable theories. The experiments described can be performed in an afternoon.Comment: 10 pages, 6 figure
    corecore