25 research outputs found

    Series

    Get PDF
    of similar vocal elements as a crucial acoustic structure in human laughte

    Advances to Electrode Pullback in Cochlear Implant Surgery

    Get PDF
    Objective. To observe the intracochlear behavior of a cochlear implant electrode insertion technique (called "pullback") in temporal bones. Study Design. Experimental. Settings. Tertiary referral center. Method. The change of the intracochlear electrode position was investigated under various conditions of an electrode pullback (N = 54) in 9 radiologically, size-estimated temporal bones (TBs). Those TBs were prepared by removal of the cochlear scalar roof to apply digital video capture procedures to monitor the pullback procedures. The digitally captured pictures were analyzed with specific software. Results. An optimal pullback of the electrode varied between 1.37 mm and 2.67 mm. While a limited pullback is without risk, an extended pullback bears the risk of removing the electrode tip out of its initial position or out of the cochlea. A correlation between cochlear size and the amount of pullback was not found. Conclusion. An initial insertion to the first or the second marker on the electrode followed by a limited pullback of about 1.37 mm to 1.5 mm can be recommended to achieve an optimized perimodiolar position. A pullback of up to two marker positions bears the risk of removing the electrode tip out of its initial position

    Identifying Fishes through DNA Barcodes and Microarrays

    Get PDF
    Background: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of ‘‘DNA barcoding’’ and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the ‘‘position of label’’ effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (.90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products

    Wiederholung akustischer Muster im Gesang der Amsel

    No full text

    Hierarchical learning of song in birds: A case of vocal imitation?

    No full text
    corecore