1 research outputs found
Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum Transformations
Simple derivation is presented of the four families of infinitely many shape
invariant Hamiltonians corresponding to the exceptional Laguerre and Jacobi
polynomials. Darboux-Crum transformations are applied to connect the well-known
shape invariant Hamiltonians of the radial oscillator and the
Darboux-P\"oschl-Teller potential to the shape invariant potentials of
Odake-Sasaki. Dutta and Roy derived the two lowest members of the exceptional
Laguerre polynomials by this method. The method is expanded to its full
generality and many other ramifications, including the aspects of generalised
Bochner problem and the bispectral property of the exceptional orthogonal
polynomials, are discussed.Comment: LaTeX2e with amsmath, amssymb, amscd 26 pages, no figure