48 research outputs found

    Investigation of the kinetic regularities of the reaction of dry reforming of methane using nickel-containing catalysts based on cerium-zirconium oxides

    Get PDF
    In this study, we performed an investigation of the kinetics of the reaction of dry reforming of methane (DRM). For this work we used nickel-containing cerium-zirconium oxides. The catalysts were prepared in supercritical iso-propanol and characterized by means of XRD, TEM, XPS. It was found that the rate of DRM reaction becomes first order in methane and zero order in carbon dioxide. The dependences of the conversions of the reactants and product yields were obtained as a function of the contact time and the concentration of the initial mixture. In addition, the effective activation energy was calculated. It was shown that the most active and stable catalyst is 5wt% Ni/Ce0.5Zr0.5O[2]

    Экспериментальное исследование процесса влагоудаления из различных типов древесной хвойной биомассы при подготовке к получению тепловой энергии.

    Get PDF
    В результате эксперимента получены результаты изменения массовой скорости испарения, коэффициента аккомодации и парциального давления для хвойных пород древесины. Получены зависимости массовой скорости испарения от температуры, массовой скорости испарения от времени испарения, а также проведен расчет коэффициента аккомодации.As a result of the experiment, the results of changes in the mass evaporation rate, accommodation coefficient and partial pressure for coniferous wood species were obtained. Dependences of the mass evaporation rate on temperature, mass evaporation rate on evaporation time, and calculation of the accommodation coefficient are obtained

    The translocations t(6;18;11)(q24;q21;q21) and t(11;14;18)(q21;q32;q21) lead to a fusion of the API2 and MALT1 genes and occur in MALT lymphomas

    Get PDF
    So far, only one variant translocation of the t(11;18)(q21;q21), the t(11;12;18) (q21;q13;q21), has been reported. We herein describe two new variant translocations, the t(6;18;11)(q24;q21;q21) and the t(11;14;18)(q21;q32;q21), occurring in mucosa-associated lymphoid tissue (MALT) lymphomas. In both cases, fluorescence in situ hybridization (FISH) and reverse transcriptase polymerase chain reaction (RT-PCR) revealed the presence of an 5′API2-3′MALT1 fusion product, encoded on the derivative chromosome 11. Exon 7 of API2 was fused with exon 5 of MALT1 in the t(11;14;18) and with exon 8 of MALT1 in the t(6;18;11). FISH revealed the involvement of the immunoglobulin locus in the t(11;14;18). Rapid amplification of cDNA ends (RACE)-PCR to detect the involved partner gene on 6q showed exclusively wild-type API2 and MALT1 sequences

    Ibrutinib combined with immunochemotherapy with or without autologous stem-cell transplantation versus immunochemotherapy and autologous stem-cell transplantation in previously untreated patients with mantle cell lymphoma (TRIANGLE):a three-arm, randomised, open-label, phase 3 superiority trial of the European Mantle Cell Lymphoma Network

    Get PDF
    Background: Adding ibrutinib to standard immunochemotherapy might improve outcomes and challenge autologous stem-cell transplantation (ASCT) in younger (aged 65 years or younger) mantle cell lymphoma patients. This trial aimed to investigate whether the addition of ibrutinib results in a superior clinical outcome compared with the pre-trial immunochemotherapy standard with ASCT or an ibrutinib-containing treatment without ASCT. We also investigated whether standard treatment with ASCT is superior to a treatment adding ibrutinib but without ASCT. Methods: The open-label, randomised, three-arm, parallel-group, superiority TRIANGLE trial was performed in 165 secondary or tertiary clinical centres in 13 European countries and Israel. Patients with previously untreated, stage II–IV mantle cell lymphoma, aged 18–65 years and suitable for ASCT were randomly assigned 1:1:1 to control group A or experimental groups A+I or I, stratified by study group and mantle cell lymphoma international prognostic index risk groups. Treatment in group A consisted of six alternating cycles of R-CHOP (intravenous rituximab 375 mg/m2 on day 0 or 1, intravenous cyclophosphamide 750 mg/m2 on day 1, intravenous doxorubicin 50 mg/m2 on day 1, intravenous vincristine 1·4 mg/m2 on day 1, and oral prednisone 100 mg on days 1–5) and R-DHAP (or R-DHAOx, intravenous rituximab 375 mg/m2 on day 0 or 1, intravenous or oral dexamethasone 40 mg on days 1–4, intravenous cytarabine 2 × 2 g/m2 for 3 h every 12 h on day 2, and intravenous cisplatin 100 mg/m2 over 24 h on day 1 or alternatively intravenous oxaliplatin 130 mg/m2 on day 1) followed by ASCT. In group A+I, ibrutinib (560 mg orally each day) was added on days 1–19 of R-CHOP cycles and as fixed-duration maintenance (560 mg orally each day for 2 years) after ASCT. In group I, ibrutinib was given the same way as in group A+I, but ASCT was omitted. Three pairwise one-sided log-rank tests for the primary outcome of failure-free survival were statistically monitored. The primary analysis was done by intention-to-treat. Adverse events were evaluated by treatment period among patients who started the respective treatment. This ongoing trial is registered with ClinicalTrials.gov, NCT02858258. Findings: Between July 29, 2016 and Dec 28, 2020, 870 patients (662 men, 208 women) were randomly assigned to group A (n=288), group A+I (n=292), and group I (n=290). After 31 months median follow-up, group A+I was superior to group A with 3-year failure-free survival of 88% (95% CI 84–92) versus 72% (67–79; hazard ratio 0·52 [one-sided 98·3% CI 0–0·86]; one-sided p=0·0008). Superiority of group A over group I was not shown with 3-year failure-free survival 72% (67–79) versus 86% (82–91; hazard ratio 1·77 [one-sided 98·3% CI 0–3·76]; one-sided p=0·9979). The comparison of group A+I versus group I is ongoing. There were no relevant differences in grade 3–5 adverse events during induction or ASCT between patients treated with R-CHOP/R-DHAP or ibrutinib combined with R-CHOP/R-DHAP. During maintenance or follow-up, substantially more grade 3–5 haematological adverse events and infections were reported after ASCT plus ibrutinib (group A+I; haematological: 114 [50%] of 231 patients; infections: 58 [25%] of 231; fatal infections: two [1%] of 231) compared with ibrutinib only (group I; haematological: 74 [28%] of 269; infections: 52 [19%] of 269; fatal infections: two [1%] of 269) or after ASCT (group A; haematological: 51 [21%] of 238; infections: 32 [13%] of 238; fatal infections: three [1%] of 238). Interpretation: Adding ibrutinib to first-line treatment resulted in superior efficacy in younger mantle cell lymphoma patients with increased toxicity when given after ASCT. Adding ibrutinib during induction and as maintenance should be part of first-line treatment of younger mantle cell lymphoma patients. Whether ASCT adds to an ibrutinib-containing regimen is not yet determined. Funding: Janssen and Leukemia &amp; Lymphoma Society.</p

    Ibrutinib combined with immunochemotherapy with or without autologous stem-cell transplantation versus immunochemotherapy and autologous stem-cell transplantation in previously untreated patients with mantle cell lymphoma (TRIANGLE):a three-arm, randomised, open-label, phase 3 superiority trial of the European Mantle Cell Lymphoma Network

    Get PDF
    Background: Adding ibrutinib to standard immunochemotherapy might improve outcomes and challenge autologous stem-cell transplantation (ASCT) in younger (aged 65 years or younger) mantle cell lymphoma patients. This trial aimed to investigate whether the addition of ibrutinib results in a superior clinical outcome compared with the pre-trial immunochemotherapy standard with ASCT or an ibrutinib-containing treatment without ASCT. We also investigated whether standard treatment with ASCT is superior to a treatment adding ibrutinib but without ASCT. Methods: The open-label, randomised, three-arm, parallel-group, superiority TRIANGLE trial was performed in 165 secondary or tertiary clinical centres in 13 European countries and Israel. Patients with previously untreated, stage II–IV mantle cell lymphoma, aged 18–65 years and suitable for ASCT were randomly assigned 1:1:1 to control group A or experimental groups A+I or I, stratified by study group and mantle cell lymphoma international prognostic index risk groups. Treatment in group A consisted of six alternating cycles of R-CHOP (intravenous rituximab 375 mg/m2 on day 0 or 1, intravenous cyclophosphamide 750 mg/m2 on day 1, intravenous doxorubicin 50 mg/m2 on day 1, intravenous vincristine 1·4 mg/m2 on day 1, and oral prednisone 100 mg on days 1–5) and R-DHAP (or R-DHAOx, intravenous rituximab 375 mg/m2 on day 0 or 1, intravenous or oral dexamethasone 40 mg on days 1–4, intravenous cytarabine 2 × 2 g/m2 for 3 h every 12 h on day 2, and intravenous cisplatin 100 mg/m2 over 24 h on day 1 or alternatively intravenous oxaliplatin 130 mg/m2 on day 1) followed by ASCT. In group A+I, ibrutinib (560 mg orally each day) was added on days 1–19 of R-CHOP cycles and as fixed-duration maintenance (560 mg orally each day for 2 years) after ASCT. In group I, ibrutinib was given the same way as in group A+I, but ASCT was omitted. Three pairwise one-sided log-rank tests for the primary outcome of failure-free survival were statistically monitored. The primary analysis was done by intention-to-treat. Adverse events were evaluated by treatment period among patients who started the respective treatment. This ongoing trial is registered with ClinicalTrials.gov, NCT02858258. Findings: Between July 29, 2016 and Dec 28, 2020, 870 patients (662 men, 208 women) were randomly assigned to group A (n=288), group A+I (n=292), and group I (n=290). After 31 months median follow-up, group A+I was superior to group A with 3-year failure-free survival of 88% (95% CI 84–92) versus 72% (67–79; hazard ratio 0·52 [one-sided 98·3% CI 0–0·86]; one-sided p=0·0008). Superiority of group A over group I was not shown with 3-year failure-free survival 72% (67–79) versus 86% (82–91; hazard ratio 1·77 [one-sided 98·3% CI 0–3·76]; one-sided p=0·9979). The comparison of group A+I versus group I is ongoing. There were no relevant differences in grade 3–5 adverse events during induction or ASCT between patients treated with R-CHOP/R-DHAP or ibrutinib combined with R-CHOP/R-DHAP. During maintenance or follow-up, substantially more grade 3–5 haematological adverse events and infections were reported after ASCT plus ibrutinib (group A+I; haematological: 114 [50%] of 231 patients; infections: 58 [25%] of 231; fatal infections: two [1%] of 231) compared with ibrutinib only (group I; haematological: 74 [28%] of 269; infections: 52 [19%] of 269; fatal infections: two [1%] of 269) or after ASCT (group A; haematological: 51 [21%] of 238; infections: 32 [13%] of 238; fatal infections: three [1%] of 238). Interpretation: Adding ibrutinib to first-line treatment resulted in superior efficacy in younger mantle cell lymphoma patients with increased toxicity when given after ASCT. Adding ibrutinib during induction and as maintenance should be part of first-line treatment of younger mantle cell lymphoma patients. Whether ASCT adds to an ibrutinib-containing regimen is not yet determined. Funding: Janssen and Leukemia &amp; Lymphoma Society.</p

    Translocation breakpoints in FHIT and FRA3B in both homologs of chromosome 3 in an esophageal adenocarcinoma

    Full text link
    Common fragile sites have been proposed to play a mechanistic role in chromosome translocations and other rearrangements in cancer cells in vivo based on their behavior in vitro and their co-localization with cancer translocation breakpoints. This hypothesis has been the subject of controversy, because associations have been made at the chromosomal level and because of the large number of both fragile sites and cancer chromosome breakpoints. Tests of this hypothesis at the molecular level are now possible with the cloning of common fragile site loci and the use of fragile site clones in the analysis of rearranged chromosomes. FRA3B, the most frequently seen common fragile site, lies within the large FHIT gene. It is now well established that this region is the site of frequent, large intragenic deletions and aberrant transcripts in a number of tumors and tumor cell lines. In contrast, only one tumor-associated translocation involving the FHIT gene has been reported. We have found translocations in both homologs of chromosome 3 in an early-passage esophageal adenocarcinoma cell line. This cell line showed no normal FHIT transcripts by reverse transcription polymerase chain reaction. Subsequent chromosome analysis showed translocations of the short arms of both homologs of chromosome 3: t(3;16) and t(3;4). The breakpoints of both translocations were shown by fluorescence in situ hybridization and polymerase chain reaction to be in the FHIT gene, at or near the center of the fragile site region. Using rapid amplification of cDNA ends with FHIT primers, a noncoding chimeric transcript resulting from t(3;16) was identified. These data provide direct support for the hypothesis that FRA3B , and likely other common fragile sites, may be “hot spots” for translocations in certain cancers, as they are for deletions, and that such translocations have the potential to form abnormal chimeric transcripts. In addition, the results suggest selection for loss of a functional FHIT gene by the translocation events. © 2001 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35130/1/1095_ftp.pd

    Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line.</p> <p>Methods</p> <p>The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-<it>ras</it>, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice. Sensitivity towards chemotherapy was analysed by MTT assay.</p> <p>Results</p> <p>PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice resulted in formation of primary tumors and spontaneous lung metastasis.</p> <p>Conclusion</p> <p>The established PaCa 5061 cell line and its injection into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.</p

    EBV and 1q Gains Affect Gene and miRNA Expression in Burkitt Lymphoma

    No full text
    Abnormalities of the long arm of chromosome 1 (1q) represent the most frequent secondary chromosomal aberrations in Burkitt lymphoma (BL) and are observed almost exclusively in EBV-negative BL cell lines (BL-CLs). To verify chromosomal abnormalities, we cytogenetically investigated EBV-negative BL patient material, and to elucidate the 1q gain impact on gene expression, we performed qPCR with six 1q-resident genes and analyzed miRNA expression in BL-CLs. We observed 1q aberrations in the form of duplications, inverted duplications, isodicentric chromosome idic(1)(q10), and the accumulation of 1q12 breakpoints, and we assigned 1q21.2–q32 as a commonly gained region in EBV-negative BL patients. We detected MCL1, ARNT, MLLT11, PDBXIP1, and FCRL5, and 64 miRNAs, showing EBV- and 1q-gain-dependent dysregulation in BL-CLs. We observed MCL1, MLLT11, PDBXIP1, and 1q-resident miRNAs, hsa-miR-9, hsa-miR-9*, hsa-miR-92b, hsa-miR-181a, and hsa-miR-181b, showing copy-number-dependent upregulation in BL-CLs with 1q gains. MLLT11, hsa-miR-181a, hsa-miR-181b, and hsa-miR-183 showed exclusive 1q-gains-dependent and FCRL5, hsa-miR-21, hsa-miR-155, hsa-miR-155*, hsa-miR-221, and hsa-miR-222 showed exclusive EBV-dependent upregulation. We confirmed previous data, e.g., regarding the EBV dependence of hsa-miR-17-92 cluster members, and obtained detailed information considering 1q gains in EBV-negative and EBV-positive BL-CLs. Altogether, our data provide evidence for a non-random involvement of 1q gains in BL and contribute to enlightening and understanding the EBV-negative and EBV-positive BL pathogenesis
    corecore