493 research outputs found

    Intra-and interobserver reliability of determining the femoral footprint of the torn anterior cruciate ligament on MRI scans

    Get PDF
    BACKGROUND: Re-injury rates following reconstruction of the anterior cruciate ligament (ACL) are significant; in more than 20% of patients a rupture of the graft occurs. One of the main reasons for graft failure is malposition of the femoral tunnel. The femoral origin of the torn ACL can be hard to visualize during arthroscopy, plus many individual variation in femoral origin anatomy exists, which may lead to this malpositioning. To develop a patient specific guide that may resolve this problem, a preoperative MRI is needed to identify the patient specific femoral origin of the ACL. The issue here is that there may be a difference in the reliability of identification of the femoral footprint of the ACL on MRI between different observers with different backgrounds and level of experience. The purpose of this study was to determine the intra- and interobserver reliability of identifying the femoral footprint of the torn ACL on MRI and to compare this between orthopedic surgeons, residents in orthopedic surgery and MSK radiologists.METHODS: MR images of the knee joint were collected retrospectively from 20 subjects with a confirmed rupture of the ACL. The 2D (coronal, sagittal, transversal) proton-density (PD) images were selected for the segmentation procedure to create 3D models of the femurs. The center of the femoral footprint of the ACL on 20 MRI scans, with visual feedback on 3D models (as reference) was determined twice by eight observers. The intra- and interobserver reliability of determining the center of the femoral footprint on MRI was evaluated. Intraclass correlation coefficients (ICCs) were calculated for the X, Y and Z coordinates separately and for a 3D coordinate.RESULTS: The mean 3D distance between the first and second assessment (intraobserver reliability) was 3.82 mm. The mean 3D distance between observers (interobserver reliability) was 8.67 mm. ICCs were excellent (&gt; 0.95), except for those between the assessments of the two MSK radiologists of the Y and Z coordinates (0.890 and 0.800 respectively). Orthopedic surgeons outscored the residents and radiologists in terms of intra- and interobserver agreement.CONCLUSION: Excellent intraobserver reliability was demonstrated (&lt; 4 mm). However the results of the interobserver reliability manifested remarkably less agreement between observers (&gt; 8 mm). An orthopedic background seems to increase both intra- and interobserver reliability. Preoperative planning of the femoral tunnel position in ACL reconstruction remains a surgical decision. Experienced orthopedic surgeons should be consulted when planning for patient specific instrumentation in ACL reconstruction.</p

    Patient specific instrumentation in ACL reconstruction:a proof-of-concept cadaver experiment assessing drilling accuracy when using 3D printed guides

    Get PDF
    Introduction: Accurate positioning of the femoral tunnel in ACL reconstruction is of the utmost importance to reduce the risk of graft failure. Limited visibility during arthroscopy and a wide anatomical variance attribute to femoral tunnel malposition using conventional surgical techniques. The purpose of this study was to determine whether a patient specific 3D printed surgical guide allows for in vitro femoral tunnel positioning within 2 mm of the planned tunnel position. Materials and Methods: A patient specific guide for femoral tunnel positioning in ACL reconstruction was created for four human cadaveric knee specimens based on routine clinical MRI data. Fitting properties were judged by two orthopedic surgeons. MRI scanning was performed both pre- and post-procedure. The planned tunnel endpoint was compared to the actual drilled femoral tunnel. Results: This patient specific 3D printed guide showed a mean deviation of 5.0 mm from the center of the planned femoral ACL origin. Conclusion: In search to improve accuracy and consistency of femoral tunnel positioning in ACL reconstruction, the use of a patient specific 3D printed surgical guide is a viable option to explore further. The results are comparable to those of conventional techniques; however, further design improvements are necessary to improve accuracy and enhance reproducibility.</p

    Patient specific instrumentation in ACL reconstruction:a proof-of-concept cadaver experiment assessing drilling accuracy when using 3D printed guides

    Get PDF
    Introduction: Accurate positioning of the femoral tunnel in ACL reconstruction is of the utmost importance to reduce the risk of graft failure. Limited visibility during arthroscopy and a wide anatomical variance attribute to femoral tunnel malposition using conventional surgical techniques. The purpose of this study was to determine whether a patient specific 3D printed surgical guide allows for in vitro femoral tunnel positioning within 2 mm of the planned tunnel position. Materials and Methods: A patient specific guide for femoral tunnel positioning in ACL reconstruction was created for four human cadaveric knee specimens based on routine clinical MRI data. Fitting properties were judged by two orthopedic surgeons. MRI scanning was performed both pre- and post-procedure. The planned tunnel endpoint was compared to the actual drilled femoral tunnel. Results: This patient specific 3D printed guide showed a mean deviation of 5.0 mm from the center of the planned femoral ACL origin. Conclusion: In search to improve accuracy and consistency of femoral tunnel positioning in ACL reconstruction, the use of a patient specific 3D printed surgical guide is a viable option to explore further. The results are comparable to those of conventional techniques; however, further design improvements are necessary to improve accuracy and enhance reproducibility.</p

    Constraints on Cosmological Models from Hubble Space Telescope Observations of High-z Supernovae

    Get PDF
    We have coordinated Hubble Space Telescope photometry with ground-based discovery for three supernovae: two SN Ia near z~0.5 (SN 1997ce, SN 1997cj) and a third event at z=0.97 (SN 1997ck). The superb spatial resolution of HST separates each supernova from its host galaxy and leads to good precision in the light curves. The HST data combined with ground-based photometry provide good temporal coverage. We use these light curves and relations between luminosity, light curve shape, and color calibrated from low-z samples to derive relative luminosity distances which are accurate to 10% at z~0.5 and 20% at z=1. The redshift-distance relation is used to place constraints on the global mean matter density, Omega_matter, and the normalized cosmological constant, Omega_Lambda. When the HST sample is combined with the distance to SN 1995K (z=0.48), analyzed by the same precepts, it suggests that matter alone is insufficient to produce a flat Universe. Specifically, for Omega_matter+Omega_Lambda=1, Omega_matter is less than 1 with >95% confidence, and our best estimate of Omega_matter is -0.1 +/- 0.5 if Omega_Lambda=0. Although the present result is based on a very small sample whose systematics remain to be explored, it demonstrates the power of HST measurements for high redshift supernovae.Comment: Submitted to ApJ Letters, 3 figures, 1 plate, additional tabl

    Factors influencing the surgical process during shoulder joint replacement:Time-action analysis of five different prostheses and three different approaches

    Get PDF
    Background: To evaluate the per-operative process of shoulder joint replacement, time-action analysis can be used.Material/Methods: Forty procedures performed by 7 surgeons with different experience rising 5 different prostheses and 3 different Surgical approaches were analyzed.Results: The surgical procedures showed a large variation in, for example, duration, tasks of team members, and protocol used. The surgical procedure was influenced by several factors, such as the prosthesis used, the surgical approach, the patient's condition, and the experience of the surgeon. Exposure of the glenoid was difficult and several retractors were needed, which were held by an extra assistant or clamped to the table or the surgeon. Two main limitations were seen in all procedures: repeated actions and waiting. Also, five errors could be identified. None of the alignment instruments was completely reliable and they allowed the surgeon to make major errors.Conclusions: Better alignment instruments, pre-operative planning techniques, and operation protocols are needed for shoulder prostheses. The training of resident surgeons should be focused on the exposure phase, the alignment of the humeral head, the exposure of the glenoid, and the alignment of the glenoid. Evaluating the surgical process using time-action analysis can be used to determine the limitations during surgical procedures. Furthermore, it shows the large variation in factors affecting surgical performance, indicating that a system approach is needed to improve surgical outcome.</p
    corecore