17 research outputs found
Recommended from our members
Transcriptome-Wide Association Supplements Genome-Wide Association in Zea mays.
Modern improvement of complex traits in agricultural species relies on successful associations of heritable molecular variation with observable phenotypes. Historically, this pursuit has primarily been based on easily measurable genetic markers. The recent advent of new technologies allows assaying and quantifying biological intermediates (hereafter endophenotypes) which are now readily measurable at a large scale across diverse individuals. The usefulness of endophenotypes for delineating the regulatory landscape of the genome and genetic dissection of complex trait variation remains underexplored in plants. The work presented here illustrated the utility of a large-scale (299-genotype and seven-tissue) gene expression resource to dissect traits across multiple levels of biological organization. Using single-tissue- and multi-tissue-based transcriptome-wide association studies (TWAS), we revealed that about half of the functional variation acts through altered transcript abundance for maize kernel traits, including 30 grain carotenoid abundance traits, 20 grain tocochromanol abundance traits, and 22 field-measured agronomic traits. Comparing the efficacy of TWAS with genome-wide association studies (GWAS) and an ensemble approach that combines both GWAS and TWAS, we demonstrated that results of TWAS in combination with GWAS increase the power to detect known genes and aid in prioritizing likely causal genes. Using a variance partitioning approach in the largely independent maize Nested Association Mapping (NAM) population, we also showed that the most strongly associated genes identified by combining GWAS and TWAS explain more heritable variance for a majority of traits than the heritability captured by the random genes and the genes identified by GWAS or TWAS alone. This not only improves the ability to link genes to phenotypes, but also highlights the phenotypic consequences of regulatory variation in plants
Genome-Wide Association Study and Pathway-Level Analysis of Kernel Color in Maize.
Rapid development and adoption of biofortified, provitamin A-dense orange maize (Zea mays L.) varieties could be facilitated by a greater understanding of the natural variation underlying kernel color, including as it relates to carotenoid biosynthesis and retention in maize grain. Greater abundance of carotenoids in maize kernels is generally accompanied by deeper orange color, useful for distinguishing provitamin A-dense varieties to consumers. While kernel color can be scored and selected with high-throughput, low-cost phenotypic methods within breeding selection programs, it remains to be well established as to what would be the logical genetic loci to target for selection for kernel color. We conducted a genome-wide association study of maize kernel color, as determined by colorimetry, in 1,651 yellow and orange inbreds from the Ames maize inbred panel. Associations were found with y1, encoding the first committed step in carotenoid biosynthesis, and with dxs2, which encodes the enzyme responsible for the first committed step in the biosynthesis of the isoprenoid precursors of carotenoids. These genes logically could contribute to overall carotenoid abundance and thus kernel color. The lcyE and zep1 genes, which can affect carotenoid composition, were also found to be associated with colorimeter values. A pathway-level analysis, focused on genes with a priori evidence of involvement in carotenoid biosynthesis and retention, revealed associations for dxs3 and dmes1, involved in isoprenoid biosynthesis; ps1 and vp5, within the core carotenoid pathway; and vp14, involved in cleavage of carotenoids. Collectively, these identified genes appear relevant to the accumulation of kernel color
A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.
Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A
Practical Considerations and Limitations of Using Leaf and Canopy Temperature Measurements as a Stomatal Conductance Proxy: Sensitivity across Environmental Conditions, Scale, and Sample Size
Stomatal conductance (gs) is a crucial component of plant physiology, as it links plant productivity and water loss through transpiration. Estimating gs indirectly through leaf temperature (Tl) measurement is common for reducing the high labor cost associated with direct gs measurement. However, the relationship between observed Tl and gs can be notably affected by local environmental conditions, canopy structure, measurement scale, sample size, and gs itself. To better understand and quantify the variation in the relationship between Tl measurements to gs, this study analyzed the sensitivity of Tl to gs using a high-resolution three-dimensional model that resolves interactions between microclimate and canopy structure. The model was used to simulate the sensitivity of Tl to gs across different environmental conditions, aggregation scales (point measurement, infrared thermometer, and thermographic image), and sample sizes. Results showed that leaf-level sensitivity of Tl to gs was highest under conditions of high net radiation flux, high vapor pressure deficit, and low boundary layer conductance. The study findings also highlighted the trade-off between measurement scale and sample size to maximize sensitivity. Smaller scale measurements (e.g., thermocouple) provided maximal sensitivity because they allow for exclusion of shaded leaves and the ground, which have low sensitivity. However, large sample sizes (up to 50 to 75) may be needed to differentiate genotypes. Larger-scale measurements (e.g., thermal camera) reduced sample size requirements but include low-sensitivity elements in the measurement. This work provides a means of estimating leaf-level sensitivity and offers quantitative guidance for balancing scale and sample size issues
Genome-Wide Association Study and Pathway-Level Analysis of Kernel Color in Maize
Rapid development and adoption of biofortified, provitamin A-dense orange maize (Zea mays L.) varieties could be facilitated by a greater understanding of the natural variation underlying kernel color, including as it relates to carotenoid biosynthesis and retention in maize grain. Greater abundance of carotenoids in maize kernels is generally accompanied by deeper orange color, useful for distinguishing provitamin A-dense varieties to consumers. While kernel color can be scored and selected with high-throughput, low-cost phenotypic methods within breeding selection programs, it remains to be well established as to what would be the logical genetic loci to target for selection for kernel color. We conducted a genome-wide association study of maize kernel color, as determined by colorimetry, in 1,651 yellow and orange inbreds from the Ames maize inbred panel. Associations were found with y1, encoding the first committed step in carotenoid biosynthesis, and with dxs2, which encodes the enzyme responsible for the first committed step in the biosynthesis of the isoprenoid precursors of carotenoids. These genes logically could contribute to overall carotenoid abundance and thus kernel color. The lcyE and zep1 genes, which can affect carotenoid composition, were also found to be associated with colorimeter values. A pathway-level analysis, focused on genes with a priori evidence of involvement in carotenoid biosynthesis and retention, revealed associations for dxs3 and dmes1, involved in isoprenoid biosynthesis; ps1 and vp5, within the core carotenoid pathway; and vp14, involved in cleavage of carotenoids. Collectively, these identified genes appear relevant to the accumulation of kernel color
Recommended from our members
A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.
Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A
A Foundation for Provitamin A Biofortification of Maize: Genome-Wide Association and Genomic Prediction Models of Carotenoid Levels
Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A
Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain
Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals
Data from: Novel loci underlie natural variation in vitamin E levels in maize grain
Tocopherols, tocotrienols and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are non-photosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5,000-line U.S. maize (Zea mays) nested association-mapping panel. Fifty-two quantitative trait loci (QTL) for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted, given that, like most major cereal crops, maize grain is non-photosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops