4 research outputs found

    LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching

    Full text link
    Obtaining large pre-trained models that can be fine-tuned to new tasks with limited annotated samples has remained an open challenge for medical imaging data. While pre-trained deep networks on ImageNet and vision-language foundation models trained on web-scale data are prevailing approaches, their effectiveness on medical tasks is limited due to the significant domain shift between natural and medical images. To bridge this gap, we introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets. We have collected approximately 1.3 million medical images from 55 publicly available datasets, covering a large number of organs and modalities such as CT, MRI, X-ray, and Ultrasound. We benchmark several state-of-the-art self-supervised algorithms on this dataset and propose a novel self-supervised contrastive learning algorithm using a graph-matching formulation. The proposed approach makes three contributions: (i) it integrates prior pair-wise image similarity metrics based on local and global information; (ii) it captures the structural constraints of feature embeddings through a loss function constructed via a combinatorial graph-matching objective; and (iii) it can be trained efficiently end-to-end using modern gradient-estimation techniques for black-box solvers. We thoroughly evaluate the proposed LVM-Med on 15 downstream medical tasks ranging from segmentation and classification to object detection, and both for the in and out-of-distribution settings. LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models. For challenging tasks such as Brain Tumor Classification or Diabetic Retinopathy Grading, LVM-Med improves previous vision-language models trained on 1 billion masks by 6-7% while using only a ResNet-50.Comment: Update Appendi

    On the Out of Distribution Robustness of Foundation Models in Medical Image Segmentation

    Full text link
    Constructing a robust model that can effectively generalize to test samples under distribution shifts remains a significant challenge in the field of medical imaging. The foundational models for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach. It showcases impressive learning abilities across different tasks with the need for only a limited amount of annotated samples. While numerous techniques have focused on developing better fine-tuning strategies to adapt these models for specific domains, we instead examine their robustness to domain shifts in the medical image segmentation task. To this end, we compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset and show that foundation-based models enjoy better robustness than other architectures. From here, we further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution (OOD) data, proving particularly beneficial for real-world applications. Our experiments not only reveal the limitations of current indicators like accuracy on the line or agreement on the line commonly used in natural image applications but also emphasize the promise of the introduced Bayesian uncertainty. Specifically, lower uncertainty predictions usually tend to higher out-of-distribution (OOD) performance.Comment: Advances in Neural Information Processing Systems (NeurIPS) 2023, Workshop on robustness of zero/few-shot learning in foundation model

    An Outbreak of Severe Infections with Community-Acquired MRSA Carrying the Panton-Valentine Leukocidin Following Vaccination

    Get PDF
    Background: Infections with community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) are emerging worldwide. We investigated an outbreak of severe CA-MRSA infections in children following out-patient vaccination. Methods and Findings: We carried out a field investigation after adverse events following immunization (AEFI) were reported. We reviewed the clinical data from all cases. S. aureus recovered from skin infections and from nasal and throat swabs were analyzed by pulse-field gel electrophoresis, multi locus sequence typing, PCR and microarray. In May 2006, nine children presented with AEFI, ranging from fatal toxic shock syndrome, necrotizing soft tissue infection, purulent abscesses, to fever with rash. All had received a vaccination injection in different health centres in one District of Ho Chi Minh City. Eight children had been vaccinated by the same health care worker (HCW). Deficiencies in vaccine quality, storage practices, or preparation and delivery were not found. Infection control practices were insufficient. CA-MRSA was cultured in four children and from nasal and throat swabs from the HCW. Strains from children and HCW were indistinguishable. All carried the Panton-Valentine leukocidine (PVL), the staphylococcal enterotoxin B gene, the gene complex for staphylococcal-cassette-chromosome mec type V, and were sequence type 59. Strain HCM3A is epidemiologically unrelated to a strain of ST59 prevalent in the USA, althoughthey belong to the same lineage. Conclusions. We describe an outbreak of infections with CA-MRSA in children, transmitted by an asymptomatic colonized HCW during immunization injection. Consistent adherence to injection practice guidelines is needed to prevent CA-MRSA transmission in both in- and outpatient settings
    corecore