3 research outputs found
A numerical study of the quasinormal mode excitation of Kerr black holes
We present numerical results from three-dimensional evolutions of scalar perturbations of Kerr black holes. Our simulations make use of a high-order accurate multi-block code which naturally allows for fixed adaptivity and smooth inner (excision) and outer boundaries. We focus on the quasinormal ringing phase, presenting a systematic method for extraction of the quasinormal mode frequencies and amplitudes and comparing our results against perturbation theory. The amplitude of each mode depends exponentially on the starting time of the quasinormal regime, which is not defined unambiguously. We show that this time-shift problem can be circumvented by looking at appropriately chosen relative mode amplitudes. From our simulations we extract the quasinormal frequencies and the relative and absolute amplitudes of corotating and counterrotating modes (including overtones in the corotating case). We study the dependence of these amplitudes on the shape of the initial perturbation, the angular dependence of the mode and the black hole spin, comparing against results from perturbation theory in the so-called asymptotic approximation. We also compare the quasinormal frequencies from our numerical simulations with predictions from perturbation theory, finding excellent agreement. Finally we study under what conditions the relative amplitude between given pairs of modes gets maximally excited and present a quantitative analysis of rotational mode-mode coupling. The main conclusions and techniques of our analysis are quite general and, as such, should be of interest in the study of ringdown gravitational waves produced by astrophysical gravitational wave sources
Numerical relativity with characteristic evolution, using six angular patches
The characteristic approach to numerical relativity is a useful tool in
evolving gravitational systems. In the past this has been implemented using two
patches of stereographic angular coordinates. In other applications, a
six-patch angular coordinate system has proved effective. Here we investigate
the use of a six-patch system in characteristic numerical relativity, by
comparing an existing two-patch implementation (using second-order finite
differencing throughout) with a new six-patch implementation (using either
second- or fourth-order finite differencing for the angular derivatives). We
compare these different codes by monitoring the Einstein constraint equations,
numerically evaluated independently from the evolution. We find that, compared
to the (second-order) two-patch code at equivalent resolutions, the errors of
the second-order six-patch code are smaller by a factor of about 2, and the
errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue
AMR, stability and higher accuracy
Efforts to achieve better accuracy in numerical relativity have so far
focused either on implementing second order accurate adaptive mesh refinement
or on defining higher order accurate differences and update schemes. Here, we
argue for the combination, that is a higher order accurate adaptive scheme.
This combines the power that adaptive gridding techniques provide to resolve
fine scales (in addition to a more efficient use of resources) together with
the higher accuracy furnished by higher order schemes when the solution is
adequately resolved. To define a convenient higher order adaptive mesh
refinement scheme, we discuss a few different modifications of the standard,
second order accurate approach of Berger and Oliger. Applying each of these
methods to a simple model problem, we find these options have unstable modes.
However, a novel approach to dealing with the grid boundaries introduced by the
adaptivity appears stable and quite promising for the use of high order
operators within an adaptive framework