8,689 research outputs found

    Renormalized field theory and particle density profile in driven diffusive systems with open boundaries

    Full text link
    We investigate the density profile in a driven diffusive system caused by a plane particle source perpendicular to the driving force. Focussing on the case of critical bulk density cˉ\bar{c} we use a field theoretic renormalization group approach to calculate the density c(z)c(z) as a function of the distance from the particle source at first order in ϵ=2d\epsilon=2-d (dd: spatial dimension). For d=1d=1 we find reasonable agreement with the exact solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field profile are computed for d=2d=2 with the result c(z)cˉz1(ln(z))2/3c(z)-\bar{c} \sim z^{-1} (\ln(z))^{2/3} for zz \rightarrow \infty.Comment: 32 pages, RevTex, 4 Postscript figures, to appear in Phys. Rev.

    Surface critical behavior of driven diffusive systems with open boundaries

    Full text link
    Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir which is necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response functions is governed by a new exponent eta_1 which is related to the anomalous scaling dimension of the chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile are calculated at first order in epsilon = 5-d. Some of our results are checked by computer simulations.Comment: 10 pages ReVTeX, 6 figures include

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0md10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent ηsp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of ηsp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    Lifshitz-point critical behaviour to O(ϵ2){\boldsymbol{O(\epsilon^2)}}

    Full text link
    We comment on a recent letter by L. C. de Albuquerque and M. M. Leite (J. Phys. A: Math. Gen. 34 (2001) L327-L332), in which results to second order in ϵ=4d+m2\epsilon=4-d+\frac{m}{2} were presented for the critical exponents νL2\nu_{{\mathrm{L}}2}, ηL2\eta_{{\mathrm{L}}2} and γL2\gamma_{{\mathrm{L}}2} of d-dimensional systems at m-axial Lifshitz points. We point out that their results are at variance with ours. The discrepancy is due to their incorrect computation of momentum-space integrals. Their speculation that the field-theoretic renormalization group approach, if performed in position space, might give results different from when it is performed in momentum space is refuted.Comment: Latex file, uses the included iop stylefiles; Uses the texdraw package to generate included figure

    Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans

    Get PDF
    Simultaneous scalp EEG–fMRI measurements allow the study of epileptic networks and more generally, of the coupling between neuronal activity and haemodynamic changes in the brain. Intracranial EEG (icEEG) has greater sensitivity and spatial specificity than scalp EEG but limited spatial sampling. We performed simultaneous icEEG and functional MRI recordings in epileptic patients to study the haemodynamic correlates of intracranial interictal epileptic discharges (IED). Two patients undergoing icEEG with subdural and depth electrodes as part of the presurgical assessment of their pharmaco-resistant epilepsy participated in the study. They were scanned on a 1.5 T MR scanner following a strict safety protocol. Simultaneous recordings of fMRI and icEEG were obtained at rest. IED were subsequently visually identified on icEEG and their fMRI correlates were mapped using a general linear model (GLM). On scalp EEG–fMRI recordings performed prior to the implantation, no IED were detected. icEEG–fMRI was well tolerated and no adverse health effect was observed. intra-MR icEEG was comparable to that obtained outside the scanner. In both cases, significant haemodynamic changes were revealed in relation to IED, both close to the most active electrode contacts and at distant sites. In one case, results showed an epileptic network including regions that could not be sampled by icEEG, in agreement with findings from magneto-encephalography, offering some explanation for the persistence of seizures after surgery. Hence, icEEG–fMRI allows the study of whole-brain human epileptic networks with unprecedented sensitivity and specificity. This could help improve our understanding of epileptic networks with possible implications for epilepsy surgery

    Surface criticality in random field magnets

    Get PDF
    The boundary-induced scaling of three-dimensional random field Ising magnets is investigated close to the bulk critical point by exact combinatorial optimization methods. We measure several exponents describing surface criticality: β1\beta_1 for the surface layer magnetization and the surface excess exponents for the magnetization and the specific heat, βs\beta_s and αs\alpha_s. The latter ones are related to the bulk phase transition by the same scaling laws as in pure systems, but only with the same violation of hyperscaling exponent θ\theta as in the bulk. The boundary disorders faster than the bulk, and the experimental and theoretical implications are discussed.Comment: 6 pages, 9 figures, to appear in Phys. Rev.

    Gitelman-Syndrom

    Get PDF

    The target asymmetry in hard vector-meson electroproduction and parton angular momenta

    Full text link
    The target asymmetry for electroproduction of vector mesons is investigated within the handbag approach. While the generalized parton distribution (GPD) H is taken from a previous analysis of the elctroproduction cross section, we here construct the GPD E from double distributions and constrain it by the Pauli form factors of the nucleon, positivity bounds and sum rules. Predictions for the target asymmetry are given for various vector mesons and discussed how experimental data on the asymmetry will further constrain E and what we may learn about the angular momenta the partons carry.Comment: 24 pages, 11 figures, late

    Critical behaviour near multiple junctions and dirty surfaces in the two-dimensional Ising model

    Full text link
    We consider m two-dimensional semi-infinite planes of Ising spins joined together through surface spins and study the critical behaviour near to the junction. The m=0 limit of the model - according to the replica trick - corresponds to the semi-infinite Ising model in the presence of a random surface field (RSFI). Using conformal mapping, second-order perturbation expansion around the weakly- and strongly-coupled planes limits and differential renormalization group, we show that the surface critical behaviour of the RSFI model is described by Ising critical exponents with logarithmic corrections to scaling, while at multiple junctions (m>2) the transition is first order. There is a spontaneous junction magnetization at the bulk critical point.Comment: Old paper, for archiving. 6 pages, 1 figure, IOP macro, eps

    Adsorption of Xe and Ar on Quasicrystalline Al-Ni-Co

    Full text link
    An interaction potential energy between and adsorbate (Xe and Ar) and the 10-fold Al-Ni-Co quasicrystal is computed by summing over all adsorbate-substrate interatomic interactions. The quasicrystal atoms' coordinates are obtained from LEED experiments and the Lennard-Jones parameters of Xe-Al, Xe-Ni and Xe-Co are found using semiempirical combining rules. The resulting potential energy function of position is highly corrugated. Monolayer adsorption of Xe and Ar on the quasicrystal surface is investigated in two cases: 1) in the limit of low coverage (Henry's law regime), and 2) at somewhat larger coverage, when interactions between adatoms are considered through the second virial coefficient, C_{AAS}. A comparison with adsorption on a flat surface indicates that the corrugation enhances the effect on Xe-Xe (Ar-Ar) interactions. The theoretical results for the low coverage adsorption regime are compared to experimental (LEED isobar) data.Comment: 12 pages, 8figure
    corecore