9,139 research outputs found

    Renormalized field theory and particle density profile in driven diffusive systems with open boundaries

    Full text link
    We investigate the density profile in a driven diffusive system caused by a plane particle source perpendicular to the driving force. Focussing on the case of critical bulk density cˉ\bar{c} we use a field theoretic renormalization group approach to calculate the density c(z)c(z) as a function of the distance from the particle source at first order in ϵ=2d\epsilon=2-d (dd: spatial dimension). For d=1d=1 we find reasonable agreement with the exact solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field profile are computed for d=2d=2 with the result c(z)cˉz1(ln(z))2/3c(z)-\bar{c} \sim z^{-1} (\ln(z))^{2/3} for zz \rightarrow \infty.Comment: 32 pages, RevTex, 4 Postscript figures, to appear in Phys. Rev.

    Surface critical behavior of driven diffusive systems with open boundaries

    Full text link
    Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir which is necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response functions is governed by a new exponent eta_1 which is related to the anomalous scaling dimension of the chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile are calculated at first order in epsilon = 5-d. Some of our results are checked by computer simulations.Comment: 10 pages ReVTeX, 6 figures include

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0md10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent ηsp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of ηsp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    A Monte Carlo study of surface critical phenomena: The special point

    Full text link
    We study the special point in the phase diagram of a semi-infinite system, where the bulk transition is in the three-dimensional Ising universality class. To this end we perform a finite size scaling study of the improved Blume-Capel model on the simple cubic lattice with two different types of surface interactions. In order to check for the effect of leading bulk corrections we have also simulated the spin-1/2 Ising model on the simple cubic lattice. We have accurately estimated the surface enhancement coupling at the special point of these models. We find yts=0.718(2)y_{t_s}=0.718(2) and yhs=1.6465(6)y_{h_s}=1.6465(6) for the surface renormalization group exponents of the special transitions. These results are compared with previous ones obtained by using field theoretic methods and Monte Carlo simulations of the spin-1/2 Ising model. Furthermore we study the behaviour of the surface transition near the special point and finally we discuss films with special boundary conditions at one surface and fixed ones at the other.Comment: 21 pages, 2 figures. figure 1 replaced, various typos correcte

    Effects of surfaces on resistor percolation

    Full text link
    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents \phi_{\mathcal S \mathnormal} and \phi_{\mathcal S \mathnormal}^\infty for the special and the ordinary transition, respectively, to one-loop order.Comment: 19 pages, 3 figure

    Comment on `Renormalization-Group Calculation of the Dependence on Gravity of the Surface Tension and Bending Rigidity of a Fluid Interface'

    Full text link
    It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration gg, so that its results cannot be applied to critical properties of interfaces for g0g\to 0.Comment: A Comment on a recent Letter by J.G. Segovia-L\'opez and V. Romero-Roch\'{\i}n, Phys. Rev. Lett.86, 2369 (2001). Latex file, 1 page (revtex

    On the surface critical behaviour in Ising strips: density-matrix renormalization-group study

    Full text link
    Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along the pseudo-coexistence curve also behaves as for the ordinary transition below the wetting temperature for the finite value of the surface field.Comment: 15 pages, 9 figure

    Thermodynamic Casimir effects involving interacting field theories with zero modes

    Full text link
    Systems with an O(n) symmetrical Hamiltonian are considered in a dd-dimensional slab geometry of macroscopic lateral extension and finite thickness LL that undergo a continuous bulk phase transition in the limit LL\to\infty. The effective forces induced by thermal fluctuations at and above the bulk critical temperature Tc,T_{c,\infty} (thermodynamic Casimir effect) are investigated below the upper critical dimension d=4d^*=4 by means of field-theoretic renormalization group methods for the case of periodic and special-special boundary conditions, where the latter correspond to the critical enhancement of the surface interactions on both boundary planes. As shown previously [\textit{Europhys. Lett.} \textbf{75}, 241 (2006)], the zero modes that are present in Landau theory at Tc,T_{c,\infty} make conventional RG-improved perturbation theory in 4ϵ4-\epsilon dimensions ill-defined. The revised expansion introduced there is utilized to compute the scaling functions of the excess free energy and the Casimir force for temperatures T\geqT_{c,\infty} as functions of LL/ξ\mathsf{L}\equiv L/\xi_\infty, where ξ\xi_\infty is the bulk correlation length. Scaling functions of the LL-dependent residual free energy per area are obtained whose L0\mathsf{L}\to0 limits are in conformity with previous results for the Casimir amplitudes ΔC\Delta_C to O(ϵ3/2)O(\epsilon^{3/2}) and display a more reasonable small-L\mathsf{L} behavior inasmuch as they approach the critical value ΔC\Delta_C monotonically as L0\mathsf{L}\to 0.Comment: 23 pages, 10 figure

    Lifshitz-point critical behaviour to O(ϵ2){\boldsymbol{O(\epsilon^2)}}

    Full text link
    We comment on a recent letter by L. C. de Albuquerque and M. M. Leite (J. Phys. A: Math. Gen. 34 (2001) L327-L332), in which results to second order in ϵ=4d+m2\epsilon=4-d+\frac{m}{2} were presented for the critical exponents νL2\nu_{{\mathrm{L}}2}, ηL2\eta_{{\mathrm{L}}2} and γL2\gamma_{{\mathrm{L}}2} of d-dimensional systems at m-axial Lifshitz points. We point out that their results are at variance with ours. The discrepancy is due to their incorrect computation of momentum-space integrals. Their speculation that the field-theoretic renormalization group approach, if performed in position space, might give results different from when it is performed in momentum space is refuted.Comment: Latex file, uses the included iop stylefiles; Uses the texdraw package to generate included figure
    corecore