399 research outputs found

    Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines

    Get PDF
    HIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, these individuals have chronic inflammation associated with heightened risk of cardiovascular pathology. HIV-1 establishes proviruses in long-lived CD4+ memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Though the majority of proviruses that persist during antiviral therapy are defective for production of infectious virions, many are expressed, raising the possibility that the HIV-1 provirus or its transcripts contribute to ongoing inflammation. Here we found that the HIV-1 provirus activated innate immune signaling in isolated dendritic cells, macrophages, and CD4+ T cells. Immune activation required transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. If rev was provided in trans, all HIV-1 coding sequences were dispensable for activation except those cis-acting sequences required for replication or splicing. These results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens

    Influence of different glycoproteins and of the virion core on SERINC5 antiviral activity [preprint]

    Get PDF
    Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three accessory proteins encoded by diverse retroviruses, HIV-1 Nef, EIAV S2, and MLV Glycogag, each independently disrupt SERINC5 antiviral activity, by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., the vesicular stomatitis glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and M-PMV virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. Infectivity of particles, pseudotyped with HIV-1, amphotropic-MLV, or influenza virus glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. Particles generated by all three cores, and pseudotyped with glycoproteins from either avian leukosis virus-A, human endogenous retrovirus K (HERV-K), ecotropic-MLV, HTLV-1, Measles morbillivirus, lymphocytic choriomeningitis mammarenavirus (LCMV), Marburg virus, Ebola virus, severe acute respiratory syndrome-related coronavirus (SARS-CoV), or VSV, were insensitive to SERINC5. In contrast, particles pseudotyped with M-PMV, RD114, or rabies virus (RABV) glycoproteins were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 by particular glycoproteins did not correlate with reduced SERINC5 incorporation into particles or with the route of viral entry. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5

    Primate immunodeficiency virus Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex [preprint]

    Get PDF
    Drugs that inhibit HIV-1 replication and prevent progression to AIDS do not eliminate HIV-1 proviruses from the chromosomes of long-lived CD4+ memory T cells. To escape eradication by these antiviral drugs, or by the host immune system, HIV-1 exploits poorly defined host factors that silence provirus transcription. These same factors, though, must be overcome by all retroviruses, including HIV-1 and other primate immunodeficiency viruses, in order to activate provirus transcription and produce new virus. Here we show that Vpx and Vpr, proteins from a wide range of primate immunodeficiency viruses, activate provirus transcription in human CD4+ T cells. Provirus activation required the DCAF1 adaptor that links Vpx and Vpr to the CUL4A/B ubiquitin ligase complex, but did not require degradation of SAMHD1, a well-characterized target of Vpx and Vpr. A loss-of-function screen for transcription silencing factors that mimic the effect of Vpx on provirus silencing identified all components of the Human Silencing Hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN), and MORC2. Vpx associated with the HUSH complex components and decreased steady-state levels of these proteins in a DCAF-dependent manner. Finally, vpx and FAM208A knockdown accelerated HIV-1 and SIVMAC replication kinetics in CD4+ T cells to a similar extent, and HIV-2 replication required either vpx or FAM208A disruption. These results demonstrate that the HUSH complex restricts transcription of primate immunodeficiency viruses and thereby contributes to provirus latency. To counteract this restriction and activate provirus expression, primate immunodeficiency viruses encode Vpx and Vpr proteins that degrade HUSH complex components

    Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding

    Get PDF
    The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, removing the glycan cap and exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. NPC1 binding to cleaved GP1 is required for entry. How this interaction translates to GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a bulk fluorescence dequenching assay and single-molecule Forster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca2+, and NPC1 binding synergistically induce conformational changes in GP2 and permit virus-liposome lipid mixing. Acidic pH and Ca2+ shifted the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. Glycan cap cleavage on GP1 enabled GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the postfusion 6-helix bundle; NPC1 binding further promoted transition to the irreversible conformation. Thus, the glycan cap of GP1 may allosterically protect against inactivation of EBOV by premature triggering of GP2

    Predicting performance using background characteristics of international medical graduates in an inner-city university-affiliated Internal Medicine residency training program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IMGs constitute about a third of the United States (US) internal medicine graduates. US residency training programs face challenges in selection of IMGs with varied background features. However data on this topic is limited. We analyzed whether any pre-selection characteristics of IMG residents in our internal medicine program are associated with selected outcomes, namely competency based evaluation, examination performance and success in acquiring fellowship positions after graduation.</p> <p>Methods</p> <p>We conducted a retrospective study of 51 IMGs at our ACGME accredited teaching institution between 2004 and 2007. Background resident features namely age, gender, self-reported ethnicity, time between medical school graduation to residency (pre-hire time), USMLE step I & II clinical skills scores, pre-GME clinical experience, US externship and interest in pursuing fellowship after graduation expressed in their personal statements were noted. Data on competency-based evaluations, in-service exam scores, research presentation and publications, fellowship pursuance were collected. There were no fellowships offered in our hospital in this study period. Background features were compared between resident groups according to following outcomes: (a) annual aggregate graduate PGY-level specific competency-based evaluation (CBE) score above versus below the median score within our program (scoring scale of 1 – 10), (b) US graduate PGY-level specific resident in-training exam (ITE) score higher versus lower than the median score, and (c) those who succeeded to secure a fellowship within the study period. Using appropriate statistical tests & adjusted regression analysis, odds ratio with 95% confidence intervals were calculated.</p> <p>Results</p> <p>94% of the study sample were IMGs; median age was 35 years (Inter-Quartile range 25th – 75th percentile (IQR): 33–37 years); 43% women and 59% were Asian physicians. The median pre-hire time was 5 years (IQR: 4–7 years) and USMLE step I & step II clinical skills scores were 85 (IQR: 80–88) & 82 (IQR: 79–87) respectively. The median aggregate CBE scores during training were: PG1 5.8 (IQR: 5.6–6.3); PG2 6.3 (IQR 6–6.8) & PG3 6.7 (IQR: 6.7 – 7.1). 25% of our residents scored consistently above US national median ITE scores in all 3 years of training and 16% pursued a fellowship.</p> <p>Younger residents had higher aggregate annual CBE score than the program median (p < 0.05). Higher USMLE scores were associated with higher than US median ITE scores, reflecting exam-taking skills. Success in acquiring a fellowship was associated with consistent fellowship interest (p < 0.05) and research publications or presentations (p <0.05). None of the other characteristics including visa status were associated with the outcomes.</p> <p>Conclusion</p> <p>Background IMG features namely, age and USMLE scores predict performance evaluation and in-training examination scores during residency training. In addition enhanced research activities during residency training could facilitate fellowship goals among interested IMGs.</p

    SARS-CoV-2 Spike protein variant D614G increases infectivity and retains sensitivity to antibodies that target the receptor binding domain [preprint]

    Get PDF
    Virus genome sequence variants that appear over the course of an outbreak can be exploited to map the trajectory of the virus from one susceptible host to another. While such variants are usually of no functional significance, in some cases they may allow the virus to transmit faster, change disease severity, or confer resistance to antiviral therapies. Since the discovery of SARS-CoV-2 as the cause of COVID-19, the virus has spread around the globe, and thousands of SARS-CoV-2 genomes have been sequenced. The rate of sequence variation among SARS-CoV-2 isolates is modest for an RNA virus but the enormous number of human-to-human transmission events has provided abundant opportunity for selection of sequence variants. Among these, the SARS-CoV-2 Spike protein variant, D614G, was not present in the presumptive common ancestor of this zoonotic virus, but was first detected in late January in Germany and China. The D614G variant steadily increased in frequency and now constitutes \u3e97% of isolates world-wide, raising the question whether D614G confers a replication advantage to SARS-CoV-2. Structural models predict that D614G would disrupt contacts between the S1 and S2 domains of the Spike protein and cause significant shifts in conformation. Using single-cycle vectors we showed that D614G is three to nine-fold more infectious than the ancestral form on human lung and colon cell lines, as well as on other human cell lines rendered permissive by ectopic expression of human ACE2 and TMPRSS2, or by ACE2 orthologues from pangolin, pig, dog, or cat. Nonetheless, monoclonal antibodies targeting the receptor binding domain of the SARS-CoV-2 Spike protein retain full neutralization potency. These results suggest that D614G was selected for increased human-to-human transmission, that it contributed to the rapidity of SARS-CoV-2 spread around the world, and that it does not confer resistance to antiviral therapies targeting the receptor binding domain

    Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111

    Get PDF
    For highly pathogenic viruses, reporter assays that can be rapidly performed are critically needed to identify potentially functional mutations for further study under maximal containment (e.g., biosafety level 4 [BSL-4]). The Ebola virus nucleoprotein (NP) plays multiple essential roles during the viral life cycle, yet few tools exist to study the protein under BSL-2 or equivalent containment. Therefore, we adapted reporter assays to measure NP oligomerization and virion-like particle (VLP) production in live cells and further measured transcription and replication using established minigenome assays. As a proof-of-concept, we examined the NP-R111C substitution, which emerged during the 20132016 Western African Ebola virus disease epidemic and rose to high frequency. NP-R111C slightly increased NP oligomerization and VLP budding but slightly decreased transcription and replication. By contrast, a synthetic charge-reversal mutant, NP-R111E, greatly increased oligomerization but abrogated transcription and replication. These results are intriguing in light of recent structures of NP oligomers, which reveal that the neighboring residue, K110, forms a salt bridge with E349 on adjacent NP molecules. By developing and utilizing multiple reporter assays, we find that the NP-111 position mediates a complex interplay between NP\u27s roles in protein structure, virion budding, and transcription and replication

    A combined low-radio frequency/X-ray study of galaxy groups I. Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz

    Full text link
    We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGN) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at >= 1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems, and are typically associated with small, low- or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that coexist with current activity is found in six groups of the sample.Comment: Accepted for publication in the Astrophysical Journal Supplement Series, 26 pages, 18 figures. A version with high-quality figures is http://www.astro.umd.edu/~simona/giacintucci_hr.pd
    corecore