2,500 research outputs found

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p≳2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page

    On the degree-chromatic polynomial of a tree

    Get PDF
    The degree chromatic polynomial Pm(G,k)Pm(G,k) of a graph GG counts the number of kk-colorings in which no vertex has mm adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.Comment: 3 page

    Exploiting chordal structure in polynomial ideals: a Gr\"obner bases approach

    Get PDF
    Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry, and in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in terms of a graph. By carefully exploiting the properties of this graph (in particular, its chordal completions), more efficient algorithms can be developed. To this end, we develop a new technique, which we refer to as chordal elimination, that relies on elimination theory and Gr\"obner bases. By maintaining graph structure throughout the process, chordal elimination can outperform standard Gr\"obner basis algorithms in many cases. The reason is that all computations are done on "smaller" rings, of size equal to the treewidth of the graph. In particular, for a restricted class of ideals, the computational complexity is linear in the number of variables. Chordal structure arises in many relevant applications. We demonstrate the suitability of our methods in examples from graph colorings, cryptography, sensor localization and differential equations.Comment: 40 pages, 5 figure

    On the Degree-Chromatic Polynomial of a Tree

    Get PDF
    The degree chromatic polynomial Pm(G,k) of a graph G counts the number of k-colorings in which no vertex has m adjacent vertices of its same color. We prove Humpert and Martin\u27s conjecture on the leading terms of the degree chromatic polynomial of a tree
    • …
    corecore