2,500 research outputs found
On the Burer-Monteiro method for general semidefinite programs
Consider a semidefinite program (SDP) involving an positive
semidefinite matrix . The Burer-Monteiro method uses the substitution to obtain a nonconvex optimization problem in terms of an
matrix . Boumal et al. showed that this nonconvex method provably solves
equality-constrained SDPs with a generic cost matrix when , where is the number of constraints. In this note we extend
their result to arbitrary SDPs, possibly involving inequalities or multiple
semidefinite constraints. We derive similar guarantees for a fixed cost matrix
and generic constraints. We illustrate applications to matrix sensing and
integer quadratic minimization.Comment: 10 page
On the degree-chromatic polynomial of a tree
The degree chromatic polynomial of a graph counts the number of
-colorings in which no vertex has adjacent vertices of its same color.
We prove Humpert and Martin's conjecture on the leading terms of the degree
chromatic polynomial of a tree.Comment: 3 page
Exploiting chordal structure in polynomial ideals: a Gr\"obner bases approach
Chordal structure and bounded treewidth allow for efficient computation in
numerical linear algebra, graphical models, constraint satisfaction and many
other areas. In this paper, we begin the study of how to exploit chordal
structure in computational algebraic geometry, and in particular, for solving
polynomial systems. The structure of a system of polynomial equations can be
described in terms of a graph. By carefully exploiting the properties of this
graph (in particular, its chordal completions), more efficient algorithms can
be developed. To this end, we develop a new technique, which we refer to as
chordal elimination, that relies on elimination theory and Gr\"obner bases. By
maintaining graph structure throughout the process, chordal elimination can
outperform standard Gr\"obner basis algorithms in many cases. The reason is
that all computations are done on "smaller" rings, of size equal to the
treewidth of the graph. In particular, for a restricted class of ideals, the
computational complexity is linear in the number of variables. Chordal
structure arises in many relevant applications. We demonstrate the suitability
of our methods in examples from graph colorings, cryptography, sensor
localization and differential equations.Comment: 40 pages, 5 figure
On the Degree-Chromatic Polynomial of a Tree
The degree chromatic polynomial Pm(G,k) of a graph G counts the number of k-colorings in which no vertex has m adjacent vertices of its same color. We prove Humpert and Martin\u27s conjecture on the leading terms of the degree chromatic polynomial of a tree
- …