5 research outputs found

    Nephrotic syndrome: Current understanding and future therapies

    No full text
    Advances in basic and clinical research have improved our understanding of the pathomechanisms underlying nephrotic syndrome caused by minimal change disease (MCD) and focal and segmental glomerulosclerosis (FSGS). These advances are reflected in the new 2021 KDIGO-Guidelines, which emphasize the clear distinction between primary, secondary and genetic causes. Proper classification is critical, as it directly affects the therapy of choice. While glucocorticoids still play a central in inducing remission in primary forms, calcineurin inhibitors, mycophenolate mofetil, cyclophosphamide and rituximab (off label) are viable adjuncts/alternatives to reduce or replace glucocorticoids in case of side effects or contraindications. Since SGLT-2-inhibitors have shown renoprotective effects in non-diabetic patients and may help to reduce proteinuria, they should be considered in all (adult) patients with chronic kidney disease, including MCD and FSGS patients. In the near future, Sparsentan, an endothelin type A and angiotensin receptor blocker may be added to the growing arsenal of proteinuria-reducing agents, with a phase 3 trail expected to be completed in late 2022. Finally, we recommend the inclusion of all MCD/FSGS patients in clinical registries (e. g. FOrMe Registry in Germany) to ensure adequate therapy and genetic testing if indicated. In addition, national registries are an invaluable source of clinical data that helps to refine our therapies towards individualized medicine

    The role of the immune system in idiopathic nephrotic syndrome

    No full text
    Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward

    The podocytes’ inflammatory responses in experimental GN are independent of canonical MYD88-dependent toll-like receptor signaling

    No full text
    Abstract Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling

    Super-Resolution imaging of the Filtration Barrier Suggests a Role for podocin R229O in Genetic Predisposition to Glomerular disease

    No full text
    Significance Statement Podocin R229Q results from the most frequent missense variant in NPHS2, and its association with FSGS when podocin R229Q is transassociated with a second mutation in NPHS2 is well recognized. However, because results from observational studies are ambiguous and appropriate animal studies are lacking, its isolated pathogenic potency is not entirely clear. In this study, the authors introduced this genetic alteration in mice and assessed the phenotype using super-resolution microscopy and albuminuria measurements. They demonstrated a deleterious effect of the variant on podocyte morphology and on the integrity of the glomerular filtration barrier under basal conditions and after external glomerular injury. Because this finding suggests that this mutation confers a genetic predisposition to glomerular disease, it has implications for a large number of carriers worldwide. Background Diseases of the kidney?s glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. Methods To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (Pod(R231Q)). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. Results Heterozygous Pod(R231Q/wild-type) mice did not present any overt kidney disease or proteinuria. However, homozygous Pod(R231Q/R231Q) mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous Pod(R231Q/wild-type) mice showed a more severe course of disease compared with Pod(wild-type/wild-type) mice. Podocin protein levels were decreased in Pod(R231Q/wild-type) and Pod(R231Q/R231Q) mice as well as in human cultured podocytes expressing the podocin(R231Q) variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. Conclusions Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients
    corecore