787 research outputs found

    The theory of heating of the quantum ground state of trapped ions

    Full text link
    Using a displacement operator formalism, I analyse the depopulation of the vibrational ground state of trapped ions. Two heating times, one characterizing short time behaviour, the other long time behaviour are found. The short time behaviour is analyzed both for single and multiple ions, and a formula for the relative heating rates of different modes is derived. The possibility of correction of heating via the quantum Zeno effect, and the exploitation of the suppression of heating of higher modes to reduce errors in quantum computation is considered.Comment: 9 pages, 2 figure

    Resolved-sideband Raman cooling to the ground state of an optical lattice

    Full text link
    We trap neutral Cs atoms in a two-dimensional optical lattice and cool them close to the zero-point of motion by resolved-sideband Raman cooling. Sideband cooling occurs via transitions between the vibrational manifolds associated with a pair of magnetic sublevels and the required Raman coupling is provided by the lattice potential itself. We obtain mean vibrational excitations \bar{n}_x \approx \bar{n}_y \approx 0.01, corresponding to a population \sim 98% in the vibrational ground state. Atoms in the ground state of an optical lattice provide a new system in which to explore quantum state control and subrecoil laser coolingComment: PDF file, 13 pages including 3 figure

    Ground-State of Charged Bosons Confined in a Harmonic Trap

    Full text link
    We study a system composed of N identical charged bosons confined in a harmonic trap. Upper and lower energy bounds are given. It is shown in the large N limit that the ground-state energy is determined within an accuracy of ±8\pm 8% and that the mean field theory provides a reasonable result with relative error of less than 16% for the binding energy .Comment: 15 page

    Diagnostic criterion for crystallized beams

    Get PDF
    Small ion crystals in a Paul trap are stable even in the absence of laser cooling. Based on this theoretically and experimentally well-established fact we propose the following diagnostic criterion for establishing the presence of a crystallized beam: Absence of heating following the shut-down of all cooling devices. The validity of the criterion is checked with the help of detailed numerical simulations.Comment: REVTeX, 11 pages, 4 figures; submitted to PR

    Proposal for an experimental test of the many-worlds interpretation of quantum mechanics

    Get PDF
    The many-worlds interpretation of quantum mechanics predicts the formation of distinct parallel worlds as a result of a quantum mechanical measurement. Communication among these parallel worlds would experimentally rule out alternatives to this interpretation. A procedure for ``interworld'' exchange of information and energy, using only state of the art quantum optical equipment, is described. A single ion is isolated from its environment in an ion trap. Then a quantum mechanical measurement with two discrete outcomes is performed on another system, resulting in the formation of two parallel worlds. Depending on the outcome of this measurement the ion is excited from only one of the parallel worlds before the ion decoheres through its interaction with the environment. A detection of this excitation in the other parallel world is direct evidence for the many-worlds interpretation. This method could have important practical applications in physics and beyond.Comment: 17 pages, standard LaTex, no pictures, comments welcome, revised version corrects typing error in mixing tim

    Dark pair coherent states of the motion of a trapped ion

    Get PDF
    We propose a scheme for generating vibrational pair coherent states of the motion of an ion in a two-dimensional trap. In our scheme, the trapped ion is excited bichromatically by three laser beams along different directions in the X-Y plane of the ion trap. We show that if the initial vibrational state is given by a two-mode Fock state, the final steady state, indicated by the extinction of the fluorescence emitted by the ion, is a pure state. The motional state of the ion in the equilibrium realizes that of the highly-correlated pair coherent state.Comment: 14 pages, 3 figure

    Theory of Photon Blockade by an Optical Cavity with One Trapped Atom

    Get PDF
    In our recent paper [1], we reported observations of photon blockade by one atom strongly coupled to an optical cavity. In support of these measurements, here we provide an expanded discussion of the general phenomenology of photon blockade as well as of the theoretical model and results that were presented in Ref. [1]. We describe the general condition for photon blockade in terms of the transmission coefficients for photon number states. For the atom-cavity system of Ref. [1], we present the model Hamiltonian and examine the relationship of the eigenvalues to the predicted intensity correlation function. We explore the effect of different driving mechanisms on the photon statistics. We also present additional corrections to the model to describe cavity birefringence and ac-Stark shifts. [1] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).Comment: 10 pages, 6 figure

    Doppler cooling and trapping on forbidden transitions

    Get PDF
    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments

    Measurements of the Correlation Function of a Microwave Frequency Single Photon Source

    Full text link
    At optical frequencies the radiation produced by a source, such as a laser, a black body or a single photon source, is frequently characterized by analyzing the temporal correlations of emitted photons using single photon counters. At microwave frequencies, however, there are no efficient single photon counters yet. Instead, well developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate how the properties of a microwave single photon source can be characterized using correlation measurements of the emitted radiation with such detectors. We also demonstrate the cooling of a thermal field stored in a cavity, an effect which we detect using a cross-correlation measurement of the radiation emitted at the two ends of the cavity.Comment: 5 pages, 4 figure

    Photon Statistics; Nonlinear Spectroscopy of Single Quantum Systems

    Full text link
    A unified description of multitime correlation functions, nonlinear response functions, and quantum measurements is developed using a common generating function which allows a direct comparison of their information content. A general formal expression for photon counting statistics from single quantum objects is derived in terms of Liouville space correlation functions of the material system by making a single assumption that spontaneous emission is described by a master equation
    • …
    corecore