6 research outputs found

    International benchmarking of childhood cancer survival by stage at diagnosis: The BENCHISTA project protocol

    Get PDF
    BACKGROUND: Several studies have shown significant variation in overall survival rates from childhood cancer between countries, using population-based cancer registry (PBCR) data for all cancers combined and for many individual tumour types among children. Without accurate and comparable data on Tumour stage at diagnosis, it is difficult to define the reasons for these survival differences. This is because measurement systems designed for adult cancers do not apply to children's cancers and cancer registries often hold limited information on paediatric tumour stage and the data sources used to define it. AIMS: The BENCHISTA project aims to test the application of the international consensus "Toronto Staging Guidelines" (TG) for paediatric tumours by European and non-European PBCRs for six common paediatric solid tumours so that reliable comparisons of stage at diagnosis and survival rates by stage can be made to understand any differences. A secondary aim is to test the data availability and completeness of collection of several 'Toronto' consensus non-stage prognostic factors, treatment types given, occurrence of relapse/progression and cause of death as a descriptive feasibility study. METHODS: PBCRs will use their permitted data access channels to apply the Toronto staging guidelines to all incident cases of six solid childhood cancers (medulloblastoma, osteosarcoma, Ewings sarcoma, rhabdomyosarcoma, neuroblastoma and Wilms tumour) diagnosed in a consecutive three-year period within 2014-2017 in their population. Each registry will provide a de-identified patient-level dataset including tumour stage at diagnosis, with only the contributing registry holding the information that would be needed to re-identify the patients. Where available to the registry, patient-level data on 'Toronto' non-stage prognostic factors, treatments given and clinical outcomes (relapse/progression/cause of death) will be included. More than 60 PBCRs have been involved in defining the patient-level dataset items and intend to participate by contributing their population-level data. Tumour-specific on-line training workshops with clinical experts are available to cancer registry staff to assist them in applying the Toronto staging guidelines in a consistent manner. There is also a project-specific help desk for discussion of difficult cases and promotion of the CanStaging online tools, developed through the International Association of Cancer Registries, to further ensure standardisation of data collection. Country-specific stage distribution and observed survival by stage at diagnosis will be calculated for each tumour type to compare survival between countries or large geographical regions. DISCUSSION: This study will be promote and enhance the collection of standardized staging data for childhood cancer by European and non-European population-based cancer registries. Therefore, this project can be seen as a feasibility project of widespread use of Toronto Staging at a population-level by cancer registries, specifying the data sources used and testing how well standardized the processes can be. Variation in tumour stage distribution could be due to real differences, to different diagnostic practices between countries and/or to variability in how cancer registries assign Toronto stage. This work also aims to strengthen working relationships between cancer registries, clinical services and cancer-specific clinical study groups, which is important for improving patient outcomes and stimulating research

    Cancer data quality and harmonization in Europe: the experience of the BENCHISTA Project – international benchmarking of childhood cancer survival by stage

    Get PDF
    Introduction: Variation in stage at diagnosis of childhood cancers (CC) may explain differences in survival rates observed across geographical regions. The BENCHISTA project aims to understand these differences and to encourage the application of the Toronto Staging Guidelines (TG) by Population-Based Cancer Registries (PBCRs) to the most common solid paediatric cancers. Methods: PBCRs within and outside Europe were invited to participate and identify all cases of Neuroblastoma, Wilms Tumour, Medulloblastoma, Ewing Sarcoma, Rhabdomyosarcoma and Osteosarcoma diagnosed in a consecutive three-year period (2014-2017) and apply TG at diagnosis. Other non-stage prognostic factors, treatment, progression/recurrence, and cause of death information were collected as optional variables. A minimum of three-year follow-up was required. To standardise TG application by PBCRs, on-line workshops led by six tumour-specific clinical experts were held. To understand the role of data availability and quality, a survey focused on data collection/sharing processes and a quality assurance exercise were generated. To support data harmonization and query resolution a dedicated email and a question-and-answers bank were created. Results: 67 PBCRs from 28 countries participated and provided a maximally de-personalized, patient-level dataset. For 26 PBCRs, data format and ethical approval obtained by the two sponsoring institutions (UCL and INT) was sufficient for data sharing. 41 participating PBCRs required a Data Transfer Agreement (DTA) to comply with data protection regulations. Due to heterogeneity found in legal aspects, 18 months were spent on finalizing the DTA. The data collection survey was answered by 68 respondents from 63 PBCRs; 44% of them confirmed the ability to re-consult a clinician in cases where stage ascertainment was difficult/uncertain. Of the total participating PBCRs, 75% completed the staging quality assurance exercise, with a median correct answer proportion of 92% [range: 70% (rhabdomyosarcoma) to 100% (Wilms tumour)]. Conclusion: Differences in interpretation and processes required to harmonize general data protection regulations across countries were encountered causing delays in data transfer. Despite challenges, the BENCHISTA Project has established a large collaboration between PBCRs and clinicians to collect detailed and standardised TG at a population-level enhancing the understanding of the reasons for variation in overall survival rates for CC, stimulate research and improve national/regional child health plans

    Cancer data quality and harmonization in Europe: the experience of the BENCHISTA Project – international benchmarking of childhood cancer survival by stage

    Get PDF
    IntroductionVariation in stage at diagnosis of childhood cancers (CC) may explain differences in survival rates observed across geographical regions. The BENCHISTA project aims to understand these differences and to encourage the application of the Toronto Staging Guidelines (TG) by Population-Based Cancer Registries (PBCRs) to the most common solid paediatric cancers.MethodsPBCRs within and outside Europe were invited to participate and identify all cases of Neuroblastoma, Wilms Tumour, Medulloblastoma, Ewing Sarcoma, Rhabdomyosarcoma and Osteosarcoma diagnosed in a consecutive three-year period (2014-2017) and apply TG at diagnosis. Other non-stage prognostic factors, treatment, progression/recurrence, and cause of death information were collected as optional variables. A minimum of three-year follow-up was required. To standardise TG application by PBCRs, on-line workshops led by six tumour-specific clinical experts were held. To understand the role of data availability and quality, a survey focused on data collection/sharing processes and a quality assurance exercise were generated. To support data harmonization and query resolution a dedicated email and a question-and-answers bank were created.Results67 PBCRs from 28 countries participated and provided a maximally de-personalized, patient-level dataset. For 26 PBCRs, data format and ethical approval obtained by the two sponsoring institutions (UCL and INT) was sufficient for data sharing. 41 participating PBCRs required a Data Transfer Agreement (DTA) to comply with data protection regulations. Due to heterogeneity found in legal aspects, 18 months were spent on finalizing the DTA. The data collection survey was answered by 68 respondents from 63 PBCRs; 44% of them confirmed the ability to re-consult a clinician in cases where stage ascertainment was difficult/uncertain. Of the total participating PBCRs, 75% completed the staging quality assurance exercise, with a median correct answer proportion of 92% [range: 70% (rhabdomyosarcoma) to 100% (Wilms tumour)].ConclusionDifferences in interpretation and processes required to harmonize general data protection regulations across countries were encountered causing delays in data transfer. Despite challenges, the BENCHISTA Project has established a large collaboration between PBCRs and clinicians to collect detailed and standardised TG at a population-level enhancing the understanding of the reasons for variation in overall survival rates for CC, stimulate research and improve national/regional child health plans

    Influenza Vaccination Effectiveness in Paediatric ‘Healthy’ Patients: A Population-Based Study in Italy

    No full text
    Background: Seasonal influenza can cause serious morbidity, mortality, and financial burden in pediatric and adult populations. The influenza vaccine (IV) is considered the most effective way to prevent influenza and influenza-like-illness (ILI) complications. Objective: To assess the effectiveness of the IV in a cohort of healthy children in Italy. Methods: From the Pedianet database, all healthy children aged six months–14 years between 2009–2019 were enrolled. Cox proportional-hazards models were fitted to estimate hazard ratios and the 95% confidence interval for the association between IV exposure during each season of interest (from October to April of each year) with incident influenza/ILI. Exposure was considered as a time-varying variable. Vaccine effectiveness (VE) was calculated as (1-HR) × 100. The additive and prolonged effects of IV were evaluated across the seasons. Results: We found a high IV effectiveness among healthy children. No additional or prolonged effects were found. Conclusion: Our data indicates that IV was effective in preventing influenza/ILI in healthy children. Therefore, IV should be encouraged and provided free of charge to healthy children in all the Italian regions every year, reducing disease spread and lowering the burden on the pediatric population

    Influenza Vaccination Effectiveness in Paediatric ‘Healthy’ Patients: A Population-Based Study in Italy

    No full text
    Background: Seasonal influenza can cause serious morbidity, mortality, and financial burden in pediatric and adult populations. The influenza vaccine (IV) is considered the most effective way to prevent influenza and influenza-like-illness (ILI) complications. Objective: To assess the effectiveness of the IV in a cohort of healthy children in Italy. Methods: From the Pedianet database, all healthy children aged six months–14 years between 2009–2019 were enrolled. Cox proportional-hazards models were fitted to estimate hazard ratios and the 95% confidence interval for the association between IV exposure during each season of interest (from October to April of each year) with incident influenza/ILI. Exposure was considered as a time-varying variable. Vaccine effectiveness (VE) was calculated as (1-HR) × 100. The additive and prolonged effects of IV were evaluated across the seasons. Results: We found a high IV effectiveness among healthy children. No additional or prolonged effects were found. Conclusion: Our data indicates that IV was effective in preventing influenza/ILI in healthy children. Therefore, IV should be encouraged and provided free of charge to healthy children in all the Italian regions every year, reducing disease spread and lowering the burden on the pediatric population

    Long-term survival and cure fraction estimates for childhood cancer in Europe (EUROCARE-6): results from a population-based study

    No full text
    Background: The EUROCARE-5 study revealed disparities in childhood cancer survival among European countries, giving rise to important initiatives across Europe to reduce the gap. Extending its representativeness through increased coverage of eastern European countries, the EUROCARE-6 study aimed to update survival progress across countries and years of diagnosis and provide new analytical perspectives on estimates of long-term survival and the cured fraction of patients with childhood cancer. Methods: In this population-based study, we analysed 135 847 children (aged 0–14 years) diagnosed during 2000–13 and followed up to the end of 2014, recruited from 80 population-based cancer registries in 31 European countries. We calculated age-adjusted 5-year survival differences by country and over time using period analysis, for all cancers combined and for major cancer types. We applied a variant of standard mixture cure models for survival data to estimate the cure fraction of patients by childhood cancer and to estimate projected 15-year survival. Findings: 5-year survival for all childhood cancer combined in Europe in 2010–14 was 81% (95% CI 81–82), showing an increase of three percentage points compared with 2004–06. Significant progress over time was observed for almost all cancers. Survival remained stable for osteosarcomas, Ewing sarcoma, Burkitt lymphoma, non-Hodgkin lymphomas, and rhabdomyoscarcomas. For all cancers combined, inequalities still persisted among European countries (with age-adjusted 5-year survival ranging from 71% [95% CI 60–79] to 87% [77–93]). The 15-year survival projection for all patients with childhood cancer diagnosed in 2010–13 was 78%. We estimated the yearly long-term mortality rate due to causes other than the diagnosed cancer to be around 2 per 1000 patients for all childhood cancer combined, but to approach zero for retinoblastoma. The cure fraction for patients with childhood cancer increased over time from 74% (95% CI 73–75) in 1998–2001 to 80% (79–81) in 2010–13. In the latter cohort, the cure fraction rate ranged from 99% (95% CI 74–100) for retinoblastoma to 60% (58–63) for CNS tumours and reached 90% (95% CI 87–93) for lymphoid leukaemia and 70% (67–73) for acute myeloid leukaemia. Interpretation: Childhood cancer survival is increasing over time in Europe but there are still some differences among countries. Regular monitoring of childhood cancer survival and estimation of the cure fraction through population-based registry data are crucial for evaluating advances in paediatric cancer care. Funding: European Commission
    corecore