66 research outputs found

    Nifedipine decreases sVCAM-1 concentrations and oxidative stress in systemic sclerosis but does not affect the concentrations of vascular endothelial growth factor or its soluble receptor 1

    Get PDF
    Microvascular injury, oxidative stress, and impaired angiogenesis are prominent features of systemic sclerosis (SSc). We compared serum markers of these phenomena at baseline and after treatment with nifedipine in SSc patients. Forty successive SSc patients were compared with 20 matched healthy subjects. All SSc patients stopped taking calcium-channel blockers 72 hours before measurements. Twenty SSc patients were also examined after 14 days of treatment with nifedipine (60 mg/day). Quantitative ELISA was used to measure the serum concentrations of vascular endothelial growth factor (VEGF), soluble VEGF receptor 1 (sVEGFR-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), carbonyl residues, and advanced oxidation protein products (AOPP). The median concentrations of VEGF, sVEGFR-1, sVCAM-1, carbonyl residues, and AOPP were significantly higher in SSc patients than in healthy subjects at baseline. A correlation was found between VEGF concentration and carbonyl residue concentration (r = 0.43; P = 0.007). Nifedipine treatment led to a significant decrease in concentrations of sVCAM-1, carbonyl residues, and AOPP but did not affect concentrations of VEGF and sVEGFR-1. Nifedipine treatment ameliorated endothelium injury in patients with SSc, as shown by the concentrations of adhesion molecules and oxidative damage markers. The fact that VEGF and sVEGFR-1 concentrations were not changed whereas oxidative stress was ameliorated by nifedipine is consistent with the hypothesis that VEGF signalling is impaired in SSc. However, more experimental evidence is needed to determine whether the VEGF pathway is intrinsically defective in SSc

    Nifedipine protects against overproduction of superoxide anion by monocytes from patients with systemic sclerosis

    Get PDF
    We have reported previously that dihydropyridine-type calcium-channel antagonists (DTCCA) such as nifedipine decrease plasma markers of oxidative stress damage in systemic sclerosis (SSc). To clarify the cellular basis of these beneficial effects, we investigated the effects in vivo and in vitro of nifedipine on superoxide anion (O(2)(•-)) production by peripheral blood monocytes. We compared 10 healthy controls with 12 patients with SSc, first after interruption of treatment with DTCCA and second after 2 weeks of treatment with nifedipine (60 mg/day). O(2)(•- )production by monocytes stimulated with phorbol myristate acetate (PMA) was quantified by the cytochrome c reduction method. We also investigated the effects in vitro of DTCCA on O(2)(•- )production and protein phosphorylation in healthy monocytes and on protein kinase C (PKC) activity using recombinant PKC. After DTCCA had been washed out, monocytes from patients with SSc produced more O(2)(•- )than those from controls. Nifedipine treatment considerably decreased O(2)(•- )production by PMA-stimulated monocytes. Treatment of healthy monocytes with nifedipine in vitro inhibited PMA-induced O(2)(•- )production and protein phosphorylation in a dose-dependent manner. Finally, nifedipine strongly inhibited the activity of recombinant PKC in vitro. Thus, the oxidative stress damage observed in SSc is consistent with O(2)(•- )overproduction by primed monocytes. This was decreased by nifedipine treatment both in vivo and in vitro. This beneficial property of nifedipine seems to be mediated by its cellular action and by the inhibition of PKC activity. This supports the hypothesis that this drug could be useful for the treatment of diseases associated with oxidative stress

    Changes in urine composition after trauma facilitate bacterial growth.

    Get PDF
    International audienceUNLABELLED: ABSTRACT: BACKGROUND: Critically ill patients including trauma patients are at high risk of urinary tract infection (UTI). The composition of urine in trauma patients may be modified due to inflammation, systemic stress, rhabdomyolysis, life support treatment and/or urinary catheter insertion. METHODS: Prospective, single-centre, observational study conducted in patients with severe trauma and without a history of UTIs or recent antibiotic treatment. The 24-hour urine samples were collected on the first and the fifth days and the growth of Escherichia coli in urine from patients and healthy volunteers was compared. Biochemical and hormonal modifications in urine that could potentially influence bacterial growth were explored. RESULTS: Growth of E. coli in urine from trauma patients was significantly higher on days 1 and 5 than in urine of healthy volunteers. Several significant modifications of urine composition could explain these findings. On days 1 and 5, trauma patients had an increase in glycosuria, in urine iron concentration, and in the concentrations of several amino acids compared to healthy volunteers. On day 1, the urinary osmotic pressure was significantly lower than for healthy volunteers. CONCLUSION: We showed that urine of trauma patients facilitated growth of E. coli when compared to urine from healthy volunteers. This effect was present in the first 24 hours and until at least the fifth day after trauma. This phenomenon may be involved in the pathophysiology of UTIs in trauma patients. Further studies are required to define the exact causes of such modifications

    Plasma thioredoxin levels during post-cardiac arrest syndrome: relationship with severity and outcome

    Get PDF
    International audienceIntroductionDespite experimental evidence, clinical demonstration of acute state of oxidative stress and inflammation during post-cardiac arrest syndrome is lacking. Plasma level of thioredoxin (TRX), a redox-active protein induced under conditions of oxidative stress and inflammation, is increased in various critical care conditions. We determined plasma TRX concentrations after cardiac arrest and assessed relationships with severity and outcome.MethodsRetrospective study of consecutive patients admitted to a single academic intensive care unit (ICU) for out-of-hospital cardiac arrest (between July 2006 and March 2008). Plasma levels of TRX were measured at admission, day (D) 1, 2 and 3.ResultsOf 176 patients included, median TRX values measured in ICU survivors and non-survivors were, respectively: 22 ng/mL (7.8 to 77) vs. 72.4 (21.9 to 117.9) at admission (P TRX levels on admission were significantly correlated with 'low-flow' duration (P = 0.003), sequential organ failure assessment (SOFA) score (P ConclusionsOur data show for the first time that TRX levels were elevated early following cardiac arrest, suggestive of oxidative stress and inflammation occurring with this condition. Highest values were found in the most severe patients. TRX could be a useful tool for further exploration and comprehension of post-cardiac arrest syndrome

    Rôle des adipokines dans la physiopathologie de l'arthrose

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF

    Stress oxydant et vieillissement cutané (intérêt des anti-oxydants en dermopharmacie)

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF

    La sclérostine, une nouvelle cible thérapeutique dans l'ostéoporose

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF
    corecore