6 research outputs found

    On How AI Needs to Change to Advance the Science of Drug Discovery

    Full text link
    Research around AI for Science has seen significant success since the rise of deep learning models over the past decade, even with longstanding challenges such as protein structure prediction. However, this fast development inevitably made their flaws apparent -- especially in domains of reasoning where understanding the cause-effect relationship is important. One such domain is drug discovery, in which such understanding is required to make sense of data otherwise plagued by spurious correlations. Said spuriousness only becomes worse with the ongoing trend of ever-increasing amounts of data in the life sciences and thereby restricts researchers in their ability to understand disease biology and create better therapeutics. Therefore, to advance the science of drug discovery with AI it is becoming necessary to formulate the key problems in the language of causality, which allows the explication of modelling assumptions needed for identifying true cause-effect relationships. In this attention paper, we present causal drug discovery as the craft of creating models that ground the process of drug discovery in causal reasoning.Comment: Main paper: 6 pages, References: 1.5 pages. Main paper: 3 figure

    Benchmarking Generated Poses: How Rational is Structure-based Drug Design with Generative Models?

    Full text link
    Deep generative models for structure-based drug design (SBDD), where molecule generation is conditioned on a 3D protein pocket, have received considerable interest in recent years. These methods offer the promise of higher-quality molecule generation by explicitly modelling the 3D interaction between a potential drug and a protein receptor. However, previous work has primarily focused on the quality of the generated molecules themselves, with limited evaluation of the 3D molecule \emph{poses} that these methods produce, with most work simply discarding the generated pose and only reporting a "corrected" pose after redocking with traditional methods. Little is known about whether generated molecules satisfy known physical constraints for binding and the extent to which redocking alters the generated interactions. We introduce PoseCheck, an extensive analysis of multiple state-of-the-art methods and find that generated molecules have significantly more physical violations and fewer key interactions compared to baselines, calling into question the implicit assumption that providing rich 3D structure information improves molecule complementarity. We make recommendations for future research tackling identified failure modes and hope our benchmark can serve as a springboard for future SBDD generative modelling work to have a real-world impact
    corecore