151 research outputs found
The Inactivation of a New Peptidoglycan Hydrolase Pmp23 Leads to Abnormal Septum Formation in Streptococcus pneumoniae
The bacterial peptidoglycan is the major component of the cell wall which integrity is essential to cell survival. In a previous work, we identified, in the positive-Gram pathogen Streptococcus pneumoniae , a unique protein containing a new putative peptidoglycan hydrolytic domain named PECACE (PEptidoglycan CArbohydrate Cleavage Enzyme). In this study, we characterise the physiological function of this protein called Pmp23 (Pneumococcal Membrane Protein of 23 kDa). A cell wall hydrolytic activity is observed with the recombinant protein. Inactivation of the pmp23 gene in the pneumococcus led to a decreased flocculation, an increased sensitivity to β-lactam antibiotics and morphological alterations affecting the formation and localisation of the division septa. Taken together these observations indicate that Pmp23 is a hydrolase whose function is linked to peptidoglycan metabolism at the septum site
Hepatic breast cancer dissemination after an iatrogenic hepatic laceration during talc pleurodesis: a case report
<p>Abstract</p> <p>Background</p> <p>Talc pleurodesis is an effective treatment for malignant pleural effusion. We present a case of an asymptomatic hepatic laceration that occurred during pleurodesis in a breast cancer patient and led to hepatic tumor dissemination.</p> <p>Discussion</p> <p>Pleurodesis is a relatively safe procedure, although previous studies have described malignant invasion of scar tissue.</p> <p>Conclusion</p> <p>To our knowledge, this is the first case report of tumor spread due to a liver puncture during talc pleurodesis in a breast cancer patient.</p
IL2RA/CD25 Gene Polymorphisms: Uneven Association with Multiple Sclerosis (MS) and Type 1 Diabetes (T1D)
[Background]
IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity.
[Methods and Results]
Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3′- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS.
[Conclusions]
These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases.Financial support for the study was provided by the Ministerio de Educación y Ciencia (grants PN-SAF2006-02023 and TIN2007-67418-C03-03) and Junta de AndalucÃa (P07-CVI-02551) to A. Alcina and Servicio Andaluz de Salud de la Junta de AndalucÃa (grant PI0168/2007) to F. Matesanz. MarÃa Fedetz is a holder of a fellowship from Fundación IMABIS. Dorothy Ndagire is a holder of AECI-Ministerio de Asuntos Exteriores fellowship
Properties and crystallization of a genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12
Derivatives of the Escherichia coli penicillin-binding protein 5 (PBP5) with truncated carboxyl terminals were obtained by altering the carboxyl-coding end of the dacA gene. After cloning the modified dacA gene into a runaway-replication-control plasmid, one clone that overproduced and excreted the desired protein into the periplasm was used as a source for the isolation of a water-soluble PBP5 (i.e. PBP5S). In PBP5S the carboxyl-terminal 21-amino-acid region of the wild-type protein was replaced by a short 9-amino-acid segment. Milligram amounts of PBP5S were purified by penicillin affinity chromatography in the absence of detergents or of chaotropic agents. PBP5S was stable and possessed DD-carboxypeptidase activity without added Triton X-100. Upon reaction with [14C]benzylpenicillin it was converted into a rather short-lived acyl-enzyme complex, as observed with PBP5. Both PBP5 and PBP5S were crystallized. In contrast to PBP5, PBP5S yielded enzymatically active, well-formed prismatic crystals suitable for X-ray analysis
Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH.
International audienceA catalase from a peroxide resistant mutant of Proteus mirabilis binds NADPH tightly. Interestingly, this enzyme can be stripped of NADPH without loss of the catalatic activity. It is the only known non-mammalian catalase able to bind NADPH. The structure without cofactor was solved by molecular replacement using the structure of beef liver catalase as a model. The structure was refined to an R-factor of 19.3% in the range 8 to 2.2 A resolution. According to the sequence, a methionine sulphone was positioned in the haem active site. This oxidized form of methionine is particular to Proteus mirabilis catalase and likely to produce some steric hindrance in the active site. Two important water molecules are positioned in the haem distal site. These two water molecules are not located in the structure of beef liver catalase, but are supposed to account for the catalytic mechanism. The liganded form was obtained by soaking crystals of the unliganded form into an NADPH solution. The structure was refined to an R-factor of 15.9% in the range of 8 to 3.1 A resolution using the unliganded structure as a model. The NADPH was clearly located in the electron density map with the same conformation as in beef liver catalase. The NADPH binding induces slight structural changes. However, the imidazole ring of a histidine residue (His284) rotates about 50 degrees to accommodate the cofactor. The electron transfer from NADPH to the haem molecule was examined and several pathways are proposed.A catalase from a peroxide resistant mutant of Proteus mirabilis binds NADPH tightly. Interestingly, this enzyme can be stripped of NADPH without loss of the catalatic activity. It is the only known non-mammalian catalase able to bind NADPH. The structure without cofactor was solved by molecular replacement using the structure of beef liver catalase as a model. The structure was refined to an R-factor of 19.3% in the range 8 to 2.2 A resolution. According to the sequence, a methionine sulphone was positioned in the haem active site. This oxidized form of methionine is particular to Proteus mirabilis catalase and likely to produce some steric hindrance in the active site. Two important water molecules are positioned in the haem distal site. These two water molecules are not located in the structure of beef liver catalase, but are supposed to account for the catalytic mechanism. The liganded form was obtained by soaking crystals of the unliganded form into an NADPH solution. The structure was refined to an R-factor of 15.9% in the range of 8 to 3.1 A resolution using the unliganded structure as a model. The NADPH was clearly located in the electron density map with the same conformation as in beef liver catalase. The NADPH binding induces slight structural changes. However, the imidazole ring of a histidine residue (His284) rotates about 50 degrees to accommodate the cofactor. The electron transfer from NADPH to the haem molecule was examined and several pathways are proposed
- …