3 research outputs found
Effects of electret coating technology on coronary stent thrombogenicity
Stent thrombosis (ST) is a catastrophic event and efforts to reduce its incidence by altering blood-stent interactions are longstanding. A new electret coating technology that produces long-lasting negative charge on stent surface could make them intrinsically resistant to thrombosis. We assessed the thrombogenicity of stents using an annular perfusion model with confocal microscopy, and determined the efficacy of electret coating technology to confer thrombo-resistant properties to standard stents. Using an annular perfusion chamber, Bare Metal Stent (BMS), standard uncoated DES (DES), and Electret-coated DES (e-DES) were exposed to human blood under arterial flow conditions. Deposits of fibrinogen and platelets on the stent surface were analyzed using immunofluorescence staining and confocal microscopy. Surface coverage by fibrinogen and platelets and the deposit/aggregate size were quantified using computerized morphometric analysis. The experimental methodology produced consistent, quantifiable results. Area of stent surface covered by fibrinogen and platelets and the average size of the deposits/aggregates were lowest for e-DES and highest on BMS, with DES in the middle. The size of fibrinogenâdeposits showed no differences between the stents. The testing methodology used in our study successfully demonstrated that electret coating confers significant antithrombotic property to DES stents. These findings warrant confirmation in a larger study
Escitalopram Impairs Thrombin-Induced Platelet Response, Cytoskeletal Assembly and Activation of Associated Signalling Pathways
Background Serotonin reuptake inhibitors (SSRIs) may impair platelet function. Thrombin is a strong platelet agonist causing irreversible aggregation, release of granules' contents, cytoskeletal rearrangement and activation of signalling pathways. We investigated the effects of the SSRI escitalopram (SCIT) on thrombin-induced platelet response. Methods Isolated platelets were exposed to SCIT and activated with thrombin. We evaluated (1) platelet response by aggregometry and flow cytometry; (2) modifications in cytoskeleton proteins and signalling pathways by electrophoresis and Western blot; and (3) ultrastructural changes in platelets by electron microscopy. Results SCIT inhibited platelet response to thrombin, measured as platelet aggregation and expression of activation markers CD62-P and CD63 from platelet granules. Platelet aggregation decreased in a dose-dependent manner, reaching statistical significance with SCIT â„32 ”g/mL (65.4 ± 6.8% vs. 77.7 ± 2.5% for controls; p < 0.05). Expression of activation markers was statistically reduced with SCIT â„20 ”g/mL (p < 0.05). SCIT impaired the polymerization of the actin cytoskeleton and association of contractile proteins during activation with thrombin (p < 0.05 with SCIT â„50 ”g/mL). Resting platelets incubated with SCIT became most spherical, with increased platelet roundness (p < 0.01, SCIT 50 ”g/mL vs. control). SCIT interfered with signalling pathways modulated by thrombin (RhoA, PKC, Erk1/2 and PI3K/AKT). Conclusions Our data indicate that SCIT inhibits thrombin-induced platelet response and interferes with cytoskeletal assembly and related signalling pathways, thus resulting in compromised release of granules' contents, reduced platelet activation and aggregation. These mechanisms may explain the antithrombotic benefits observed in patients treated with this SSRI, and could become new therapeutic targets for future antithrombotic strategies.Instituto de Salud Carlos IIIRed de InvestigaciĂłn CardiovascularEuropean Regional Development FundMinisterio de EconomĂa y CompetitividadTechnology Development Projects in HealthCIBERSAMDepto. de Salud PĂșblica y Materno - InfantilFac. de MedicinaTRUEpu
Escitalopram Impairs Thrombin-Induced Platelet Response, Cytoskeletal Assembly and Activation of Associated Signalling Pathways
Background Serotonin reuptake inhibitors (SSRIs) may impair platelet function. Thrombin is a strong platelet agonist causing irreversible aggregation, release of granules' contents, cytoskeletal rearrangement and activation of signalling pathways. We investigated the effects of the SSRI escitalopram (SCIT) on thrombin-induced platelet response. Methods Isolated platelets were exposed to SCIT and activated with thrombin. We evaluated (1) platelet response by aggregometry and flow cytometry; (2) modifications in cytoskeleton proteins and signalling pathways by electrophoresis and Western blot; and (3) ultrastructural changes in platelets by electron microscopy. Results SCIT inhibited platelet response to thrombin, measured as platelet aggregation and expression of activation markers CD62-P and CD63 from platelet granules. Platelet aggregation decreased in a dose-dependent manner, reaching statistical significance with SCIT â„32 ”g/mL (65.4 ± 6.8% vs. 77.7 ± 2.5% for controls; p < 0.05). Expression of activation markers was statistically reduced with SCIT â„20 ”g/mL (p < 0.05). SCIT impaired the polymerization of the actin cytoskeleton and association of contractile proteins during activation with thrombin (p < 0.05 with SCIT â„50 ”g/mL). Resting platelets incubated with SCIT became most spherical, with increased platelet roundness (p < 0.01, SCIT 50 ”g/mL vs. control). SCIT interfered with signalling pathways modulated by thrombin (RhoA, PKC, Erk1/2 and PI3K/AKT). Conclusions Our data indicate that SCIT inhibits thrombin-induced platelet response and interferes with cytoskeletal assembly and related signalling pathways, thus resulting in compromised release of granules' contents, reduced platelet activation and aggregation. These mechanisms may explain the antithrombotic benefits observed in patients treated with this SSRI, and could become new therapeutic targets for future antithrombotic strategies.Instituto de Salud Carlos IIIRed de InvestigaciĂłn CardiovascularEuropean Regional Development FundMinisterio de EconomĂa y CompetitividadTechnology Development Projects in HealthCIBERSAMDepto. de Salud PĂșblica y Materno - InfantilFac. de MedicinaTRUEpu