1,484 research outputs found

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Series expansion for a stochastic sandpile

    Full text link
    Using operator algebra, we extend the series for the activity density in a one-dimensional stochastic sandpile with fixed particle density p, the first terms of which were obtained via perturbation theory [R. Dickman and R. Vidigal, J. Phys. A35, 7269 (2002)]. The expansion is in powers of the time; the coefficients are polynomials in p. We devise an algorithm for evaluating expectations of operator products and extend the series to O(t^{16}). Constructing Pade approximants to a suitably transformed series, we obtain predictions for the activity that compare well against simulations, in the supercritical regime.Comment: Extended series and improved analysi

    N-Site approximations and CAM analysis for a stochastic sandpile

    Full text link
    I develop n-site cluster approximations for a stochastic sandpile in one dimension. A height restriction is imposed to limit the number of states: each site can harbor at most two particles (height z_i \leq 2). (This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded.) On the basis of results for n \leq 11 sites, I estimate the critical particle density as zeta_c = 0.930(1), in good agreement with simulations. A coherent anomaly analysis yields estimates for the order parameter exponent [beta = 0.41(1)] and the relaxation time exponent (nu_|| \simeq 2.5).Comment: 12 pages, 7 figure

    On the absorbing-state phase transition in the one-dimensional triplet creation model

    Full text link
    We study the lattice reaction diffusion model 3A -> 4A, A -> 0 (``triplet creation") using numerical simulations and n-site approximations. The simulation results provide evidence of a discontinuous phase transition at high diffusion rates. In this regime the order parameter appears to be a discontinuous function of the creation rate; no evidence of a stable interface between active and absorbing phases is found. Based on an effective mapping to a modified compact directed percolation process, shall nevertheless argue that the transition is continuous, despite the seemingly discontinuous phase transition suggested by studies of finite systems.Comment: 23 pages, 11 figure

    Making the most of incomplete long-term datasets: the MARSS solution

    Full text link

    Complete high-precision entropic sampling

    Full text link
    Monte Carlo simulations using entropic sampling to estimate the number of configurations of a given energy are a valuable alternative to traditional methods. We introduce {\it tomographic} entropic sampling, a scheme which uses multiple studies, starting from different regions of configuration space, to yield precise estimates of the number of configurations over the {\it full range} of energies, {\it without} dividing the latter into subsets or windows. Applied to the Ising model on the square lattice, the method yields the critical temperature to an accuracy of about 0.01%, and critical exponents to 1% or better. Predictions for systems sizes L=10 - 160, for the temperature of the specific heat maximum, and of the specific heat at the critical temperature, are in very close agreement with exact results. For the Ising model on the simple cubic lattice the critical temperature is given to within 0.003% of the best available estimate; the exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu are given to within about 0.4% and 1%, respectively, of the literature values. In both two and three dimensions, results for the {\it antiferromagnetic} critical point are fully consistent with those of the ferromagnetic transition. Application to the lattice gas with nearest-neighbor exclusion on the square lattice again yields the critical chemical potential and exponent ratios β/ν\beta/\nu and γ/ν\gamma/\nu to good precision.Comment: For a version with figures go to http://www.fisica.ufmg.br/~dickman/transfers/preprints/entsamp2.pd

    Phase transition of a two dimensional binary spreading model

    Full text link
    We investigated the phase transition behavior of a binary spreading process in two dimensions for different particle diffusion strengths (DD). We found that N>2N>2 cluster mean-field approximations must be considered to get consistent singular behavior. The N=3,4N=3,4 approximations result in a continuous phase transition belonging to a single universality class along the D∈(0,1)D\in (0,1) phase transition line. Large scale simulations of the particle density confirmed mean-field scaling behavior with logarithmic corrections. This is interpreted as numerical evidence supporting that the upper critical dimension in this model is dc=2d_c=2.The pair density scales in a similar way but with an additional logarithmic factor to the order parameter. At the D=0 endpoint of the transition line we found DP criticality.Comment: 8 pages, 10 figure

    Critical Dynamics of the Contact Process with Quenched Disorder

    Full text link
    We study critical spreading dynamics in the two-dimensional contact process (CP) with quenched disorder in the form of random dilution. In the pure model, spreading from a single particle at the critical point λc\lambda_c is characterized by the critical exponents of directed percolation: in 2+12+1 dimensions, δ=0.46\delta = 0.46, η=0.214\eta = 0.214, and z=1.13z = 1.13. Disorder causes a dramatic change in the critical exponents, to δ≃0.60\delta \simeq 0.60, η≃−0.42\eta \simeq -0.42, and z≃0.24z \simeq 0.24. These exponents govern spreading following a long crossover period. The usual hyperscaling relation, 4δ+2η=dz4 \delta + 2 \eta = d z, is violated. Our results support the conjecture by Bramson, Durrett, and Schonmann [Ann. Prob. {\bf 19}, 960 (1991)], that in two or more dimensions the disordered CP has only a single phase transition.Comment: 11 pages, REVTeX, four figures available on reques

    Renormalization group of probabilistic cellular automata with one absorbing state

    Full text link
    We apply a recently proposed dynamically driven renormalization group scheme to probabilistic cellular automata having one absorbing state. We have found just one unstable fixed point with one relevant direction. In the limit of small transition probability one of the cellular automata reduces to the contact process revealing that the cellular automata are in the same universality class as that process, as expected. Better numerical results are obtained as the approximations for the stationary distribution are improved.Comment: Errors in some formulas have been corrected. Additional material available at http://mestre.if.usp.br/~javie
    • …
    corecore