912 research outputs found
Perceptual Grouping Using Superpixels
Perceptual grouping played a prominent role in support of early object recognition systems, which typically took an input image and a database of shape models and identified which of the models was visible in the image. When the database was large, local features were not sufficiently distinctive to prune down the space of models to a manageable number that could be verified. However, when causally related shape features were grouped, using intermediate-level shape priors, e.g., co-termination, symmetry, and compactness, they formed effective shape indices and allowed databases to grow in size. In recent years, the recognition (categorization) community has focused on the object detection problem, in which the input image is searched for a specific target object. Since indexing is not required to select the target model, perceptual grouping is not required to construct a discriminative shape index; the existence of a much stronger object-level shape prior precludes the need for a weaker intermediate-level shape prior. As a result, perceptual grouping activity at our major conferences has diminished. However, there are clear signs that the recognition community is moving from appearance back to shape, and from detection back to unexpected object recognition.
Shape-based perceptual grouping will play a critical role in facilitating this transition. But while causally related features must be grouped, they also need to be abstracted before they can be matched to categorical models.
In this talk, I will describe our recent progress on the use of intermediate shape priors in segmenting, grouping, and abstracting shape features. Specifically, I will describe the use of symmetry and non-accidental attachment to detect and group symmetric parts, and the use of closure to separate figure from background
Object representation and recognition
One of the primary functions of the human visual system is object recognition, an ability that allows us to relate the visual stimuli falling on our retinas to our knowledge of the world. For example, object recognition allows you to use knowledge of what an apple looks like to find it in the supermarket, to use knowledge of what a shark looks like to swim in th
A Framework for Symmetric Part Detection in Cluttered Scenes
The role of symmetry in computer vision has waxed and waned in importance
during the evolution of the field from its earliest days. At first figuring
prominently in support of bottom-up indexing, it fell out of favor as shape
gave way to appearance and recognition gave way to detection. With a strong
prior in the form of a target object, the role of the weaker priors offered by
perceptual grouping was greatly diminished. However, as the field returns to
the problem of recognition from a large database, the bottom-up recovery of the
parts that make up the objects in a cluttered scene is critical for their
recognition. The medial axis community has long exploited the ubiquitous
regularity of symmetry as a basis for the decomposition of a closed contour
into medial parts. However, today's recognition systems are faced with
cluttered scenes, and the assumption that a closed contour exists, i.e. that
figure-ground segmentation has been solved, renders much of the medial axis
community's work inapplicable. In this article, we review a computational
framework, previously reported in Lee et al. (2013), Levinshtein et al. (2009,
2013), that bridges the representation power of the medial axis and the need to
recover and group an object's parts in a cluttered scene. Our framework is
rooted in the idea that a maximally inscribed disc, the building block of a
medial axis, can be modeled as a compact superpixel in the image. We evaluate
the method on images of cluttered scenes.Comment: 10 pages, 8 figure
Integration of Quantitative and Qualitative Techniques for Deformable Model Fitting from Orthographic, Perspective, and Stereo Projections
In this paper, we synthesize a new approach to 3-D object shape recovery by integrating qualitative shape recovery techniques and quantitative physics based shape estimation techniques. Specifically, we first use qualitative shape recovery and recognition techniques to provide strong fitting constraints on physics-based deformable model recovery techniques. Secondly, we extend our previously developed technique of fitting deformable models to occluding image contours to the case of image data captured under general orthographic, perspective, and stereo projections
Disentangling Geometric Deformation Spaces in Generative Latent Shape Models
A complete representation of 3D objects requires characterizing the space of
deformations in an interpretable manner, from articulations of a single
instance to changes in shape across categories. In this work, we improve on a
prior generative model of geometric disentanglement for 3D shapes, wherein the
space of object geometry is factorized into rigid orientation, non-rigid pose,
and intrinsic shape. The resulting model can be trained from raw 3D shapes,
without correspondences, labels, or even rigid alignment, using a combination
of classical spectral geometry and probabilistic disentanglement of a
structured latent representation space. Our improvements include more
sophisticated handling of rotational invariance and the use of a diffeomorphic
flow network to bridge latent and spectral space. The geometric structuring of
the latent space imparts an interpretable characterization of the deformation
space of an object. Furthermore, it enables tasks like pose transfer and
pose-aware retrieval without requiring supervision. We evaluate our model on
its generative modelling, representation learning, and disentanglement
performance, showing improved rotation invariance and intrinsic-extrinsic
factorization quality over the prior model.Comment: 22 page
- …