14 research outputs found

    Optimal 57Co Flood Source Activity and Acquisition Time for Lymphoscintigraphy Localization Images

    Get PDF
    Martha V. Mar, Renee L. Dickinson, William D. Erwin, Richard E. Wendt. Optimal 57Co Flood Source Activity and Acquisition Time for Lymphoscintigraphy Localization Images. Journal of Nuclear Medicine Technology Jun 2008, 36 (2) 82-87; DOI: 10.2967/jnmt.107.047043https://openworks.mdanderson.org/mdacc_imgphys_pubs/1008/thumbnail.jp

    Radiation-induced complications in endovascular neurosurgery: incidence of skin effects and the feasibility of estimating risk of future tumor formation

    No full text
    The incidence of radiation-induced complications is increasingly part of the informed consent process for patients undergoing neuroendovascular procedures. Data guiding these discussions in the era of modern radiation-minimizing equipment is lacking. To quantify the rates of skin and hair effects at a modern high-volume neurovascular center, and to assess the feasibility of accurately quantifying the risk of future central nervous system (CNS) tumor formation. We reviewed a prospectively collected database of endovascular procedures performed at our institution in 2008. The entrance skin dose and brain dose were calculated. Patients receiving skin doses >2 Gy were contacted to inquire about skin and hair changes. We reviewed several recent publications from leading radiation physics bodies to evaluate the feasibility of accurately predicting future cancer risk from neurointerventional procedures. Seven hundred two procedures were included in the study. Of the patients receiving >2 Gy, 39.6% reported subacute skin or hair changes following their procedure, of which 30% were permanent. Increasing skin dose was significantly associated with permanent hair loss. We found substantial methodological difficulties in attempting to model the risk of future CNS tumor formation given the gaps in our current understanding of the brain's susceptibility to low-dose ionizing radiation. Radiation exposures exceeding 2 Gy are common in interventional neuroradiology despite modern radiation-minimizing technology. The incidence of side effects approaches 40%, although the majority is self-limiting. Gaps in current models of brain tumor formation after exposure to radiation preclude accurately quantifying the risk of future CNS tumor formation

    Silver Surfers Search for Gold: a Study Into the Online Information-Seeking Skills of Those Over Fifty

    No full text
    Older adults are now the fastest growing population of online users the world over (Olson et al. Ageing International, 36(1), 123–145, 2011). Encouraging data continues to emerge regarding the rate of Internet adoption among those over fifty in particular (Hernandez-Encuentra et al. Educational Gerontology, 35(3), 226–245, 2009). Yet questions as to the effectiveness of such use and of training designed to advance the skills of our senior surfers continue to go unanswered. While a great deal has been written on seniors and technology in general, very few studies “regarding age and its influence on search behaviour” can be found (Singer et al. 2012). This paper uses Literature Review as a method to scope and define this gap. The need for future research that specifically addresses online searching behaviours and effective training in this area for those over fifty is discussed.Arts, Education & Law Group, School of Education and Professional StudiesFull Tex

    Overview of the medium and high frequency telescopes of the LiteBIRD space mission

    No full text
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD

    LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

    Get PDF
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes

    Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD

    No full text
    LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented
    corecore