221 research outputs found

    Antinociceptive effects of lacosamide on spinal neuronal and behavioural measures of pain in a rat model of osteoarthritis.

    Get PDF
    Alterations in voltage-gated sodium channel (VGSC) function have been linked to chronic pain and are good targets for analgesics. Lacosamide (LCM) is a novel anticonvulsant that enhances the slow inactivation state of VGSCs. This conformational state can be induced by repeated neuronal firing and/or under conditions of sustained membrane depolarisation, as is expected for hyperexcitable neurones in pathological conditions such as epilepsy and neuropathy, and probably osteoarthritis (OA). In this study, therefore, we examined the antinociceptive effect of LCM on spinal neuronal and behavioural measures of pain, in vivo, in a rat OA model

    The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy

    Get PDF
    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerable side effects. The right central nucleus of the amygdala (CeA) is critical for the lateral spinal ascending pain pathway, regulates descending pain pathways and is key in the emotional-affective components of pain. Few studies have investigated the pharmacology of limbic brain areas in pain models. Here we determined the actions of systemic tapentadol on right CeA neurones of animals with neuropathy and which component of tapentadol contributes to its effect. Neuronal responses to multimodal peripheral stimulation of animals with spinal nerve ligation or sham surgery were recorded before and after two doses of tapentadol. After the higher dose of tapentadol either naloxone or yohimbine were administered. Systemic tapentadol resulted in dose-dependent decrease in right CeA neuronal activity only in neuropathy. Both naloxone and yohimbine reversed this effect to an extent that was modality selective. The interactions of the components of tapentadol are not limited to the synergy between the MOR and α2-adrenoceptors seen at spinal levels, but are seen at this supraspinal site where suppression of responses may relate to the ability of the drug to alter affective components of pain

    Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat

    Get PDF
    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue

    Mechanisms of the gabapentinoids and α2δ-1 calcium channel subunit in neuropathic pain

    Get PDF
    The gabapentinoid drugs gabapentin and pregabalin are key front-line therapies for various neuropathies of peripheral and central origin. Originally designed as analogs of GABA, the gabapentinoids bind to the α2δ-1 and α2δ-2 auxiliary subunits of calcium channels, though only the former has been implicated in the development of neuropathy in animal models. Transgenic approaches also identify α2δ-1 as key in mediating the analgesic effects of gabapentinoids, how- ever the precise molecular mechanisms remain unclear. Here we review the cur- rent understanding of the pathophysiological role of the α2δ-1 subunit, the mechanisms of analgesic action of gabapentinoid drugs and implications for efficacy in the clinic. Despite widespread use, the number needed to treat for gabapentin and pregabalin averages from 3 to 8 across neuropathies. The failure to treat large numbers of patients adequately necessitates a novel approach to treatment selection. Stratifying patients by sensory profiles may imply common underlying mechanisms, and a greater understanding of these mechanisms could lead to more direct targeting of gabapentinoids

    What goes up must come down: insights from studies on descending controls acting on spinal pain processing

    Get PDF
    Descending controls link higher processing of noxious signals to modulation of spinal cord responses to their noxious inputs. It has become possible to study one key inhibitory system in animals and humans using one painful stimulus to attenuate another distant response and so eliciting diffuse noxious inhibitory controls (DNIC) or the human counterpart, conditioned pain modulation (CPM). Here, we discuss the neuronal pathways in both species, their pharmacology and examine changes in descending controls with a focus on osteoarthritis. We will also discuss the opposing descending facilitatory system. Strong parallels between DNIC and CPM emphasize the possibility of forward and reverse translation

    Sense and sensibility—logical approaches to profiling in animal models

    Get PDF

    Central Nervous System Targets: Supraspinal Mechanisms of Analgesia

    Get PDF
    While the acute sensation of pain is protective, signaling the presence of actual or potential bodily harm, its persistence is unpleasant. When pain becomes chronic, it has limited evolutionarily advantage. Despite the differing nature of acute and chronic pain, a common theme is that sufferers seek pain relief. The possibility to medicate pain types as varied as a toothache or postsurgical pain reflects the diverse range of mechanism(s) by which pain-relieving "analgesic" therapies may reduce, eliminate, or prevent pain. Systemic application of an analgesic able to cross the blood-brain barrier can result in pain modulation via interaction with targets at different sites in the central nervous system. A so-called supraspinal mechanism of action indicates manipulation of a brain-defined circuitry. Pre-clinical studies demonstrate that, according to the brain circuitry targeted, varying therapeutic pain-relieving effects may be observed that relate to an impact on, for example, sensory and/or affective qualities of pain. In many cases, this translates to the clinic. Regardless of the brain circuitry manipulated, modulation of brain processing often directly impacts multiple aspects of nociceptive transmission, including spinal neuronal signaling. Consideration of supraspinal mechanisms of analgesia and ensuing pain relief must take into account nonbrain-mediated effects; therefore, in this review, the supraspinally mediated analgesic actions of opioidergic, anti-convulsant, and anti-depressant drugs are discussed. The persistence of poor treatment outcomes and/or side effect profiles of currently used analgesics highlight the need for the development of novel therapeutics or more precise use of available agents. Fully uncovering the complex biology of nociception, as well as currently used analgesic mechanism(s) and site(s) of action, will expedite this process

    Translational issues in precision medicine in neuropathic pain

    Get PDF
    Neuropathic pain remains poorly treated with most new drugs falling through the translational gap. The traditional model of bench-to-bedside research has relied on identifying new mechanisms/targets in animal models and then developing clinical applications. Several have advocated bridging the translational gap by beginning with clinical observations and back-translating to animal models for further investigation of mechanisms. There is good evidence that phenotyping of patients through quantitative sensory testing can lead to improved treatment selection and hence improved patient outcomes. These practices have been widely adopted in clinical investigations but its application in pre-clinical research is not mainstream. In this review, we retrospectively examine our historical rodent datasets with the aim of reconsidering drug effects on sensory neuronal endpoints, their alignment with clinical observations and how these might guide future clinical studies

    Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis.

    Get PDF
    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6g) and thermal (40, 45 and 45°C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1μg/50μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60g) and noxious thermal-(45 and 48°C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased functional role of Cav2, likely Cav2.2, channels in mediating OA pain

    Plasticity: Implications for opioid and other pharmacological interventions in specific pain states

    Get PDF
    The spinal mechanisms of action of opioids under normal conditions are reasonably well understood. The spinal effects of opioids can be enhanced or reduced depending on pathology and activity in other segmental and nonsegmental pathways. This plasticity will be considered in relation to the control of different pain states using opioids. The complex and contradictory findings on the supraspinal actions of opioids are explicable in terms of heterogeneous descending pathways to different spinal targets using multiple transmitters and receptors - therefore opioids can both increase and decrease activity in descending pathways. These pathways could exhibit considerable plasticity. There is increasing evidence that delta opioid receptor agonists have the potential to replace morphine as major analgesics with reduced side-effect profiles. The concept of preemptive analgesia, based on preventing the induction of some of the negative plastic influences on opioid controls and the detrimental effects of pain, is sound, but experimental verification in the clinical setting is difficult. For example, a delayed compensatory upregulation of inhibitory systems, particularly in inflammation, may counter persistent painful inputs. Combination therapy with opioids may be beneficial in many pain states where either negative influences are blocked or inhibitory controls are enhanced. Finally, developmental aspects of these systems are discussed in connection with the treatment of pain in young children, where inhibitory systems in the spinal cord are immature
    corecore