7,130 research outputs found

    Carbon monoxide pollution experiment

    Get PDF
    The experiment is designed to obtain data for the investigation of mechanisms by which CO is removed from the earth's atmosphere. The approach uses an orbiting platform to remotely map global CO concentrations and determine vertical CO profiles using a correlation interferometer measurement technique. The instrument is capable of measuring CO over the range of expected atmospheric burdens and of measuring trace atmospheric constituents

    Development of a breadboard model correlation interferometer for the carbon monoxide pollution experiment

    Get PDF
    The breadboard model of the correlation interferometer for the Carbon Monoxide Pollution Experiment has been designed, fabricated, and tested. Laboratory, long-path, and atmospheric tests which were performed show the technique to be a feasible method for obtaining a global carbon monoxide map and a vertical carbon monoxide profile and similar information is readily obtainable for methane as well. In addition, the technique is readily applicable to other trace gases by minor instrumental changes. As shown by the results and the conclusions, it has been determined that CO and CH4 data can be obtained with an accuracy of 10% using this technique on the spectral region around 2.3 microns

    A 19-channel d.c. SQUID magnetometer system for brain research

    Get PDF
    A 19-channel d.c. SQUID magnetometer system for neuromagnetic investigations is under constuction. The first-order gradiometers for sensing the signal are placed in a hexagonal configuration. D.c. SQUIDs based on niobium/aluminium technology have been developed, leading to a field sensitivity of about 5 fT/ Hz. SQUID read-out is realized with a resonant transformer circuit at 100 kHz. The multichannel control and detection electronics are compactly built

    Complete plastome sequences from Bertholletia excelsa and 23 related species yield informative markers for Lecythidaceae

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144266/1/aps31151_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144266/2/aps31151.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144266/3/aps31151-sup-0001-AppendixS1.pd

    A similar phylogeographical structure among sympatric North American birches (Betula) is better explained by introgression than by shared biogeographical history

    Full text link
    AimA comparative analysis of the chloroplast (cp) DNA structure of eastern North American birches (Betula) was undertaken to infer the impacts of Quaternary climate change on the phylogeographical structure of these species.LocationEastern North America.MethodsGenetic variation in chloroplast microsatellites (cpSSRs) and the psbA–trnH intergenic spacer in Betula papyrifera, Betula alleghaniensis and Betula lenta was analysed in samples from 65, 80 and 12 populations, respectively. Co‐occurring Betula uber, Betula populifolia and Betula cordifolia were also sampled to examine haplotype relationships and account for potential introgression. Haplotype networks, Bayesian analysis and comparisons of RST and GST values were used to evaluate the phylogeographical structure. Genetic diversity within and among species was compared using rarefaction analysis.ResultsThe two most widespread species, B. papyrifera and B. alleghaniensis, showed high levels of haplotype diversity, while the Appalachian endemic B. lenta possessed a single haplotype. Bayesian analysis revealed three main phylogeographical groups for B. papyrifera and four groups for B. alleghaniensis, and these two species showed extensive regional haplotype sharing and a high introgression ratio.Main conclusionsWe postulate that at least three separate refugia contributed to the recolonization of B. papyrifera and B. alleghaniensis within eastern North America, while B. lenta appears to have recolonized from a single refugium. A high haplotype diversity of B. papyrifera and B. alleghaniensis in the Great Lakes region may reflect biogeographical contact between eastern and western lineages, with the potential influence of periglacial refugia. Similar phylogeographical patterns in the distantly related B. papyrifera and B. alleghaniensis represent a geographical turnover of the same locally shared haplotypes, pointing to introgression rather than shared biogeographical history as the mechanism. Although similar phylogeographical patterns are often interpreted as evidence for common biogeographical histories, our study demonstrates that such patterns can also arise through introgression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110577/1/jbi12394.pd

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    Versatile compact atomic source for high resolution dual atom interferometry

    Full text link
    We present a compact 87^{87}Rb atomic source for high precision dual atom interferometers. The source is based on a double-stage magneto-optical trap (MOT) design, consisting of a 2-dimensional (2D)-MOT for efficient loading of a 3D-MOT. The accumulated atoms are precisely launched in a horizontal moving molasses. Our setup generates a high atomic flux (>1010>10^{10} atoms/s) with precise and flexibly tunable atomic trajectories as required for high resolution Sagnac atom interferometry. We characterize the performance of the source with respect to the relevant parameters of the launched atoms, i.e. temperature, absolute velocity and pointing, by utilizing time-of-flight techniques and velocity selective Raman transitions.Comment: uses revtex4, 9 pages, 12 figures, submitted to Phys. Rev.

    Samuel Gompers and American Consensus

    Get PDF

    Hyper-Ramsey Spectroscopy of Optical Clock Transitions

    Full text link
    We present non-standard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case these frequency shifts can be suppressed considerably below a fractional level of 10^{-17}. Moreover, our approach opens the door for the high-precision optical clocks based on direct frequency comb spectroscopy.Comment: 5 pages, 4 figure
    corecore