247 research outputs found
Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands
We study a random sampling technique to approximate integrals
by averaging the function
at some sampling points. We focus on cases where the integrand is smooth, which
is a problem which occurs in statistics. The convergence rate of the
approximation error depends on the smoothness of the function and the
sampling technique. For instance, Monte Carlo (MC) sampling yields a
convergence of the root mean square error (RMSE) of order (where
is the number of samples) for functions with finite variance. Randomized
QMC (RQMC), a combination of MC and quasi-Monte Carlo (QMC), achieves a RMSE of
order under the stronger assumption that the integrand
has bounded variation. A combination of RQMC with local antithetic sampling
achieves a convergence of the RMSE of order (where
is the dimension) for functions with mixed partial derivatives up to
order two. Additional smoothness of the integrand does not improve the rate of
convergence of these algorithms in general. On the other hand, it is known that
without additional smoothness of the integrand it is not possible to improve
the convergence rate. This paper introduces a new RQMC algorithm, for which we
prove that it achieves a convergence of the root mean square error (RMSE) of
order provided the integrand satisfies the strong
assumption that it has square integrable partial mixed derivatives up to order
in each variable. Known lower bounds on the RMSE show that this rate
of convergence cannot be improved in general for integrands with this
smoothness. We provide numerical examples for which the RMSE converges
approximately with order and , in accordance with the
theoretical upper bound.Comment: Published in at http://dx.doi.org/10.1214/11-AOS880 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Explicit constructions of point sets and sequences with low discrepancy
In this article we survey recent results on the explicit construction of
finite point sets and infinite sequences with optimal order of
discrepancy. In 1954 Roth proved a lower bound for the
discrepancy of finite point sets in the unit cube of arbitrary dimension. Later
various authors extended Roth's result to lower bounds also for the
discrepancy and for infinite sequences. While it was known
already from the early 1980s on that Roth's lower bound is best possible in the
order of magnitude, it was a longstanding open question to find explicit
constructions of point sets and sequences with optimal order of
discrepancy. This problem was solved by Chen and Skriganov in 2002 for finite
point sets and recently by the authors of this article for infinite sequences.
These constructions can also be extended to give optimal order of the
discrepancy of finite point sets for . The
main aim of this article is to give an overview of these constructions and
related results
- β¦