17 research outputs found

    Destructive effect of intravitreal heat shock protein 27 application on retinal ganglion cells and neurofilament

    No full text
    Heat shock protein 27 (HSP27) is commonly involved in cellular stress. Increased levels of HSP27 as well as autoantibodies against this protein were previously detected in glaucoma patients. Moreover, systemic immunization with HSP27 induced glaucoma-like damage in rodents. Now, for the first time, the direct effects of an intravitreal HSP27 application were investigated. For this reason, HSP27 or phosphate buffered saline (PBS, controls) was applied intravitreally in rats (n\it n = 12/group). The intraocular pressure (IOP) as well as the electroretinogram recordings were comparable in HSP27 and control eyes 21 days after the injection. However, significantly fewer retinal ganglion cells (RGCs) and amacrine cells were observed in the HSP27 group via immunohistochemistry and western blot analysis. The number of bipolar cells, on the other hand, was similar in both groups. Interestingly, a stronger neurofilament degeneration was observed in HSP27 optic nerves, while no differences were noted regarding the myelination state. In summary, intravitreal HSP27 injection led to an IOP-independent glaucoma-like damage. A degeneration of RGCs as well as their axons and amacrine cells was noted. This suggests that high levels of extracellular HSP27 could have a direct damaging effect on RGCs

    Simultaneous complement response via lectin pathway in retina and optic nerve in an experimental autoimmune glaucoma model

    No full text
    Glaucoma is a multifactorial disease and especially mechanisms occurring independently from an elevated intraocular pressure (IOP) are still unknown. Likely, the immune system contributes to the glaucoma pathogenesis. Previously, IgG antibody depositions and retinal ganglion cell (RGC) loss were found in an IOP-independent autoimmune glaucoma model. Therefore, we investigated the possible participation of the complement system in this model. Here, rats were immunized with bovine optic nerve homogenate antigen (ONA), while controls (Co) received sodium chloride (n\it n = 5–6/group). After 14 days, RGC density was quantified on flatmounts. No changes in the number of RGCs could be observed at this point in time. Longitudinal optic nerve sections were stained against the myelin basic protein (MBP). We could note few signs of degeneration processes. In order to detect distinct complement components, retinas and optic nerves were labeled with complement markers at 3, 7, 14, and 28 days and analyzed. Significantly more C3 and MAC depositions were found in retinas and optic nerves of the ONA group. These were already present at day 7, before RGC loss and demyelination occurred. Additionally, an upregulation of C3 protein was noted via Western Blot at this time. After 14 days, quantitative real-time PCR revealed significantly more C3\it C3 mRNA in the ONA retinas. An upregulation of the lectin pathway-associated mannose-serine-protease-2 (MASP2) was observed in the retinas as well as in the optic nerves of the ONA group after 7 days. Significantly more MASP2 in retinas could also be observed via Western Blot analyses at this point in time. No effect was noted in regard to C1q. Therefore, we assume that the immunization led to an activation of the complement system via the lectin pathway in retinas and optic nerves at an early stage in this glaucoma model. This activation seems to be an early response, which then triggers degeneration. These findings can help to develop novel therapy strategies for glaucoma patients

    Changes of subjective symptoms and tear film biomarkers following Femto-LASIK

    No full text
    Femtosecond laser-assisted in situ keratomileusis (Femto-LASIK) represents a common treatment modality in refractive surgery and shows excellent results in terms of safety, efficacy, predictability, and long-term stability. However, patients may be affected by dry eye symptoms. The aim of this study was to identify a potential association between subjective dry eye symptoms, objective dry eye markers, and possible changes in the tear film, which could be a target for future therapy development. Therefore, clinical (dry eye) examinations (OSDI, Schirmer test, lissamine green and fluorescein staining, BUT, visual acuity) were carried out before LASIK as well as 5 and 90 days post-OP. The dry eye marker MMP-9, cytokines (IL-1β\beta, IL-8), and pain markers (NGF, CGRP) were quantified in tear samples with immunoassays. In addition, correlation analyses were performed. Clinical examinations revealed an upregulated OSDI score 5 days post-OP and an increased lissamine green staining score 90 days post-OP. Downregulated CGRP levels were noted 5 days post-OP, while other protein markers were not significantly altered after Femto-LASIK. Hence, Femto-LASIK surgery induced subjective symptoms like that of dry eye which could objectively rather be classified as Femto-LASIK-related discomfort. In the future, this could possibly be better detected and treated using pain markers such as CGRP

    Minocycline reduces inflammatory response and cell death in a S100B retina degeneration model

    No full text
    Background:\bf Background: Previous studies noted that intravitreal injection of S100B triggered a glaucoma-like degeneration of retina and optic nerve as well as microglia activation after 14 days. The precise role of microglia in our intravitreal S100B model is still unclear. Hence, microglia were inhibited through minocycline. The aim is to investigate whether microglia have a significant influence on the degeneration process or whether they are only a side effect in the model studied here. Methods:\bf Methods: Minocycline was applied daily in rats by intraperitoneal injection using two different concentrations (13.5 mg/kg body weight, 25 mg/kg body weight). One day after treatment start, S100B or PBS was intravitreally injected in one eye per rat. The naïve groups received no injections. This resulted in a total of five groups (naïve n\it n = 14, PBS n\it n = 14, S100B n\it n = 13, 13.5 mg/kg mino n\it n = 15, 25 mg/kg mino n\it n = 15). At day 14, electroretinogram measurements were performed, followed by immunofluorescence and label-free quantitative proteomics analysis. The focus of these investigations was on the survival of RGCs as well as their axons, the response of the microglia, and the identification of further pathological modes of action of S100B. Results:\bf Results: The best signal transmission was detected via ERG in the 13.5 mg/kg mino group. The inhibition of the microglia protected optic nerve neurofilaments and decreased the negative impact of S100B on RGCs. However, the minocycline treatment could not trigger complete protection of RGCs. Furthermore, in retina and optic nerve, the minocycline treatment reduced the number and activity of S100B-triggered microglia in a concentration-dependent manner. Proteomics analysis showed that S100B application led to numerous metabolic functions and cellular stress, mainly an increased inflammatory response, glycolysis, and mitochondrial dysfunction, which caused oxidative stress in the retina. Importantly, the protective capability of lower dose of minocycline was unraveled by suppressing the apoptotic, inflammatory, and the altered metabolic processes caused by S100B insult in the retina. Conclusion:\bf Conclusion: Intravitreally injected S100B not only led to a pro-inflammatory microglial reaction, but also a mitochondrial and metabolic dysfunction. Also, these results suggest that an excessive microglial response may be a significant degenerative factor, but not the only trigger for increased cell death

    Progressive retinal and optic nerve damage in a mouse model of spontaneous opticospinal encephalomyelitis

    No full text
    Neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) are antibody mediated CNS disorders mostly affecting the optic nerve and spinal cord with potential severe impact on the visual pathway. Here, we investigated inflammation and degeneration of the visual system in a spontaneous encephalomyelitis animal model. We used double-transgenic (2D2/Th) mice which develop a spontaneous opticospinal encephalomyelitis (OSE). Retinal morphology and its function were evaluated via spectral domain optical coherence tomography (SD-OCT) and electroretinography (ERG) in 6- and 8-week-old mice. Immunohistochemistry of retina and optic nerve and examination of the retina via RT-qPCR were performed using markers for inflammation, immune cells and the complement pathway. OSE mice showed clinical signs of encephalomyelitis with an incidence of 75% at day 38. A progressive retinal thinning was detected in OSE mice via SD-OCT. An impairment in photoreceptor signal transmission occurred. This was accompanied by cellular infiltration and demyelination of optic nerves. The number of microglia/macrophages was increased in OSE optic nerves and retinas. Analysis of the retina revealed a reduced retinal ganglion cell number and downregulated Pou4f1\it Pou4f1 mRNA expression in OSE retinas. RT-qPCR revealed an elevation of microglia markers and the cytokines Tnfa\it Tnfa and Tgfb\it Tgfb. We also documented an upregulation of the complement system via the classical pathway. In summary, we describe characteristics of inflammation and degeneration of the visual system in a spontaneous encephalomyelitis model, characterized by coinciding inflammatory and degenerative mechanisms in both retina and optic nerve with involvement of the complement system

    Laquinimod protects optic nerve and retina in an experimental autoimmune encephalomyelitis model

    No full text
    Background:\bf Background: The oral immunomodulatory agent laquinimod is currently evaluated for multiple sclerosis (MS) treatment. Phase II and III studies demonstrated a reduction of degenerative processes. In addition to anti-inflammatory effects, laquinimod might have neuroprotective properties, but its impact on the visual system, which is often affected by MS, is unknown. The aim of our study was to investigate potential protective effects of laquinimod on the optic nerve and retina in an experimental autoimmune encephalomyelitis (EAE) model. Methods:\bf Methods: We induced EAE in C57/BL6 mice via MOG35–55_{35–55} immunization. Animals were divided into an untreated EAE group, three EAE groups receiving laquinimod (1, 5, or 25 mg/kg daily), starting the day post-immunization, and a nonimmunized control group. Thirty days post-immunization, scotopic electroretinograms were carried out, and mice were sacrificed for histopathology (HE, LFB), immunohistochemistry (MBP, Iba1, Tmem119, F4/80, GFAP, vimentin, Brn-3a, cleaved caspase 3) of the optic nerve and retina, and retinal qRT-PCR analyses (Brn-3a, Iba1, Tmem119, AMWAP, CD68, GFAP\textit {Brn-3a, Iba1, Tmem119, AMWAP, CD68, GFAP}). To evaluate the effect of a therapeutic approach, EAE animals were treated with 25 mg/kg aquinimod from day 16 when 60% of the animals had developed clinical signs of EAE. Results:\bf Results: Laquinimod reduced neurological EAE symptoms and improved the neuronal electrical output of the inner nuclear layer compared to untreated EAE mice. Furthermore, cellular infiltration, especially recruited phagocytes, and demyelination in the optic nerve were reduced. Microglia were diminished in optic nerve and retina. Retinal macroglial signal was reduced under treatment, whereas in the optic nerve macroglia were not affected. Additionally, laquinimod preserved retinal ganglion cells and reduced apoptosis. A later treatment with laquinimod in a therapeutic approach led to a reduction of clinical signs and to an improved b-wave amplitude. However, no changes in cellular infiltration and demyelination of the optic nerves were observed. Also, the number of retinal ganglion cells remained unaltered. Conclusion:\bf Conclusion: Fromour study, we deduce neuroprotective and anti-inflammatory effects of laquinimod on the optic nerve and retina in EAE mice, when animals were treated before any clinical signs were noted. Given the fact that the visual system is frequently affected by MS, the agent might be an interesting subject of further neuro-ophthalmic investigations

    Transfer of the experimental autoimmune glaucoma model from rats to mice

    No full text
    Studies have suggested an involvement of the immune system in glaucoma. Hence, a rat experimental autoimmune glaucoma model (EAG) was developed to investigate the role of the immune response. Here, we transferred this model into mice. Either 0.8 mg/mL of the optic nerve antigen homogenate (ONA; ONA 0.8) or 1.0 mg/mL ONA (ONA 1.0) were injected in 129/Sv mice. Controls received sodium chloride. Before and 6 weeks after immunization, the intraocular pressure (IOP) was measured. At 6 weeks, retinal neurons, glia cells, and synapses were analyzed via immunohistology and quantitative real-time PCR (RT-qPCR). Additionally, optic nerves were examined. The IOP stayed in the normal physiological range throughout the study (p\it p > 0.05). A significant reduction of retinal ganglion cells (RGCs) was noted in both immunized groups (p\it p < 0.001). Remodeling of glutamatergic and GABAergic synapses was seen in ONA 1.0 retinas. Furthermore, both ONA groups revealed optic nerve degeneration and macrogliosis (all: p\it p < 0.001). An increase of activated microglia was noted in ONA retinas and optic nerves (p\it p < 0.05). Both ONA concentrations led to RGC loss and optic nerve degeneration. Therefore, the EAG model was successfully transferred from rats to mice. In further studies, transgenic knockout mice can be used to investigate the pathomechanisms of glaucoma more precisely

    Fewer functional deficits and reduced cell death after ranibizumab treatment in a retinal ischemia model

    No full text
    Retinal ischemia is an important factor in several eye disorders. To investigate the impact of VEGF inhibitors, as a therapeutic option, we studied these in a retinal ischemia animal model. Therefore, animals received bevacizumab or ranibizumab intravitreally one day after ischemia induction. Via electroretinography, a significant decrease in a- and b-wave amplitudes was detected fourteen days after ischemia, but they were reduced to a lesser extent in the ranibizumab group. Ischemic and bevacizumab retinae displayed fewer retinal ganglion cells (RGCs), while no significant cell loss was noted in the ranibizumab group. Apoptosis was reduced after therapy. More autophagocytotic cells were observed in ischemic and bevacizumab eyes, but not in ranibizumab eyes. Additionally, more microglia, as well as active ones, were revealed in all ischemic groups, but the increase was less prominent under ranibizumab treatment. Fewer cone bipolar cells were detected in ischemic eyes, in contrast to bevacizumab and ranibizumab-treated ones. Our results demonstrate a reduced apoptosis and autophagocytosis rate after ranibizumab treatment. Furthermore, a certain protection was seen regarding functionality, RGC, and bipolar cell availability, as well as microglia activation by ranibizumab treatment after ischemic damage. Thus, ranibizumab could be an option for treatment of retinal ischemic injury
    corecore