2 research outputs found
Infinite Secret Sharing -- Examples
The motivation for extending secret sharing schemes to cases when either the
set of players is infinite or the domain from which the secret and/or the
shares are drawn is infinite or both, is similar to the case when switching to
abstract probability spaces from classical combinatorial probability. It might
shed new light on old problems, could connect seemingly unrelated problems, and
unify diverse phenomena.
Definitions equivalent in the finitary case could be very much different when
switching to infinity, signifying their difference. The standard requirement
that qualified subsets should be able to determine the secret has different
interpretations in spite of the fact that, by assumption, all participants have
infinite computing power. The requirement that unqualified subsets should have
no, or limited information on the secret suggests that we also need some
probability distribution. In the infinite case events with zero probability are
not necessarily impossible, and we should decide whether bad events with zero
probability are allowed or not.
In this paper, rather than giving precise definitions, we enlist an abundance
of hopefully interesting infinite secret sharing schemes. These schemes touch
quite diverse areas of mathematics such as projective geometry, stochastic
processes and Hilbert spaces. Nevertheless our main tools are from probability
theory. The examples discussed here serve as foundation and illustration to the
more theory oriented companion paper