4 research outputs found

    Control of gene expression in the temperate coliphage 186. X. The cl repressor directly represses transcription of the late control gene B

    No full text
    We have found that the repressor of 186 lytic transcription, CI, represses transcription of the late control gene B, with no involvement of the B protein Itself. In clone studies we showed that CI repressed transcription from the B promoter and that temperature inactivation of CIts led to B derepression. We conclude that CI repressor directly represses transcription of the Bgene and, with prophage induction, it is probable that the inactivation of the CI repressor not only derepresses early lytic transcription, but also derepresses B gene transcription, leading to the activation of transcription from the late promoters.Justin A. Dibbens, Stephen L. Gregory and J. Barry Ega

    A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA: Potential role in mRNA stabilization

    No full text
    The definitive version is available at www.blackwell-synergy.comVascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and post-transcriptional regulation plays a major role in VEGF expression. Both the 5'- and 3'-UTR are required for VEGF post-transcriptional regulation but factors binding to functional sequences within the 5'-UTR have not been fully characterized. We report here the identification of complexes, binding to the VEGFmRNA 5'- and 3'-UTR, that contain cold shock domain (CSD) and polypyrimidine tract binding (PTB) RNA binding proteins. Analysis of the CSD/PTB binding sites revealed a potential role in VEGF mRNA stability, in both noninduced and induced conditions, demonstrating a general stabilizing function. Such a stabilizing mechanism had not been reported previously for the VEGF gene. We further found that the CSD/PTB-containing complexes are large multiprotein complexes that are most likely preformed in solution and we demonstrate that PTB is associated with the VEGF mRNA in vivo. Complex formation between CSD proteins and PTB has not been reported previously. Analysis of the CSD/PTB RNA binding sites revealed a novel CSD protein RNA recognition site and also demonstrated that CSD proteins may direct the binding of CSD/PTB complexes. We found the same complexes binding to an RNA-stabilizing element of another growth factor gene, suggesting a broader functional role for the CSD/PTB complexes. Finally, as the VEGF gene is also regulated at the transcriptional level by CSD proteins, we propose a combined transcriptional/post-transcriptional role for these proteins in VEGF and other growth factor gene regulation.Leeanne S. Coles, M. Antonetta Bartley, Andrew Bert, Julie Hunter, Steven Polyak, Peter Diamond, Mathew A. Vadas and Gregory J. Goodal

    Hypoxic Regulation of Vascular Endothelial Growth Factor mRNA Stability Requires the Cooperation of Multiple RNA Elements

    No full text
    Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3′ untranslated region (3′UTR), but also contains destabilizing elements in the 5′UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5′UTR, coding region, and 3′UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention
    corecore