26 research outputs found

    Optimal scan planning for surveying large sites with static and mobile mapping systems

    Get PDF
    Since the last two decades, the use of laser scanners for generating accurate and dense 3D models has been rapidly growing in multiple disciplines. The reliance on human-expertise to perform an efficient scanning in terms of completeness and quality encouraged the researchers to develop strategies for carrying out an optimized and automated scan planning. Nevertheless, due to the predominant use of static terrestrial laser scanners (TLS), the most of developed methods have been focused on scan optimization by fixing standpoints on basis of static scanning. The increasing use of portable mobile laser scanning systems (MLS) enables faster non-stop acquisition which demands the planning of optimal scan trajectories. Therefore, a novel method addressing the absence of dynamic scan planning is proposed considering specific MLS constraints such as maximum acquisition time or closed-loops requirement. First, an initial analysis is carried out to determinate key-positions to reach during data acquisition. From these positions a navigable graph is generated to compute routes satisfying specific MLS constraints by a three-step process. This starts by estimating the number of routes necessary to subsequently carry out a coarse graph partition based on Kmedoids clustering. Next, a balancing algorithm was implemented to compute a balanced graph partition by node exchanging. Finally, partitions are extended by adding key nodes from their adjacent ones in order to provide a desirable overlapping between scans. The method was tested by simulating three laser scanner configurations in four indoor and outdoor real case studies. The acquisition quality of the computed scan planning was evaluated in terms of 3D completeness and point cloud density with the simulator Helios++

    A DEEP LEARNING APPROACH FOR THE RECOGNITION OF URBAN GROUND PAVEMENTS IN HISTORICAL SITES

    Get PDF
    Urban management is a topic of great interest for local administrators, particularly because it is strongly connected to smart city issues and can have a great impact on making cities more sustainable. In particular, thinking about the management of the physical accessibility of cities, the possibility of automating data collection in urban areas is of great interest. Focusing then on historical centres and urban areas of cities and historical sites, it can be noted that their ground surfaces are generally characterised by the use of a multitude of different pavements. To strengthen the management of such urban areas, a comprehensive mapping of the different pavements can be very useful. In this paper, the survey of a historical city (Sabbioneta, in northern Italy) carried out with a Mobile Mapping System (MMS) was used as a starting point. The approach here presented exploit Deep Learning (DL) to classify the different pavings. Firstly, the points belonging to the ground surfaces of the point cloud were selected and the point cloud was rasterised. Then the raster images were used to perform a material classification using the Deep Learning approach, implementing U-Net coupled with ResNet 18. Five different classes of materials were identified, namely sampietrini, bricks, cobblestone, stone, asphalt. The average accuracy of the result is 94%

    3D Object Classification Using Geometric Features and Pairwise Relationships

    Get PDF
    Object classification is a key differentiator of building information modeling (BIM) from three-dimensional (3D) computer-aided design (CAD). Incorrect object classification impedes the full exploitation of BIM models. Models prepared using domain-specific software cannot ensure correct object classification when transferred to other domains, and research on reconstruction of BIM models using spatial survey has not proved a full capability to classify objects. This research proposed an integrated approach to object classification that applied domain experts’ knowledge of shape features and pairwise relationships of 3D objects to effectively classify objects using a tailored matching algorithm. Among its contributions: the algorithms implemented for shape and spatial feature identification could process various complex 3D geometry; the method devised for compilation of the knowledge base considered both rigor and confidence of the inference; the algorithm for matching provides mathematical measurement of the object classification results. The integrated approach has been applied to classify 3D bridge objects in two models: a model prepared using incorrect object types and a model manually reconstructed using point cloud data. All these objects were successfully classified

    Impact analysis of accidents on the traffic flow based on massive floating car data

    Get PDF
    The wide usage of GPS-equipped devices enables the mass recording of vehicle movement trajectories describing the movement behavior of the traffic participants. An important aspect of the road traffic is the impact of anomalies, like accidents, on traffic flow. Accidents are especially important as they contribute to the the aspects of safety and also influence travel time estimations. In this paper, the impact of accidents is determined based on a massive GPS trajectory and accident dataset. Due to the missing precise date of the accidents in the data set used, first, the date of the accident is estimated based on the speed profile at the accident time. Further, the temporal impact of the accident is estimated using the speed profile of the whole day. The approach is applied in an experiment on a one month subset of the datasets. The results show that more than 72% of the accident dates are identified and the impact on the temporal dimension is approximated. Moreover, it can be seen that accidents during the rush hours and on high frequency road types (e.g. motorways, trunks or primaries) have an increasing effect on the impact duration on the traffic flow

    Road safety evaluation through automatic extraction of road horizontal alignments from Mobile LiDAR System and inductive reasoning based on a decision tree

    Get PDF
    13 p.Safe roads are a necessity for any society because of the high social costs of traffic accidents. This challenge is addressed by a novel methodology that allows us to evaluate road safety from Mobile LiDAR System data, taking advantage of the road alignment due to its influence on the accident rate. Automation is obtained through an inductive reasoning process based on a decision tree that provides a potential risk assessment. To achieve this, a 3D point cloud is classified by an iterative and incremental algorithm based on a 2.5D and 3D Delaunay triangulation, which apply different algorithms sequentially. Next, an automatic extraction process of road horizontal alignment parameters is developed to obtain geometric consistency indexes, based on a joint triple stability criterion. Likewise, this work aims to provide a powerful and effective preventive and/or predictive tool for road safety inspections. The proposed methodology was implemented on three stretches of Spanish roads, each with different traffic conditions that represent the most common road types. The developed methodology was successfully validated through as-built road projects, which were considered as “ground truth.”S

    Effectiveness of rotavirus vaccination in Spain

    Get PDF
    With the aim of determining rotavirus vaccine effectiveness (RVVE) in Spain, from Oct-2008/Jun-2009, 467 consecutive children below 2 years old with acute gastroenteritis (AGE) were recruited using a pediatric research network (ReGALIP-www.regalip.org) that includes primary, emergency and hospital care settings. Of 467 enrolled children, 32.3% were rotavirus positive and 35.0% had received at least one dose of any rotavirus vaccine. RRVE to prevent any episode of rotavirus AGE was 91.5% (95% CI: 83.7%-95.6%). RVVE to prevent hospitalization by rotavirus AGE was 95.6% (85.6-98.6%). No differences in RVVE were found regarding the vaccine used. Rotavirus vaccines have showed an outstanding effectiveness in Spain

    Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol

    Get PDF
    Background: Abiraterone acetate plus prednisolone (herein referred to as abiraterone) or enzalutamide added at the start of androgen deprivation therapy improves outcomes for patients with metastatic prostate cancer. Here, we aimed to evaluate long-term outcomes and test whether combining enzalutamide with abiraterone and androgen deprivation therapy improves survival. Methods: We analysed two open-label, randomised, controlled, phase 3 trials of the STAMPEDE platform protocol, with no overlapping controls, conducted at 117 sites in the UK and Switzerland. Eligible patients (no age restriction) had metastatic, histologically-confirmed prostate adenocarcinoma; a WHO performance status of 0–2; and adequate haematological, renal, and liver function. Patients were randomly assigned (1:1) using a computerised algorithm and a minimisation technique to either standard of care (androgen deprivation therapy; docetaxel 75 mg/m2 intravenously for six cycles with prednisolone 10 mg orally once per day allowed from Dec 17, 2015) or standard of care plus abiraterone acetate 1000 mg and prednisolone 5 mg (in the abiraterone trial) orally or abiraterone acetate and prednisolone plus enzalutamide 160 mg orally once a day (in the abiraterone and enzalutamide trial). Patients were stratified by centre, age, WHO performance status, type of androgen deprivation therapy, use of aspirin or non-steroidal anti-inflammatory drugs, pelvic nodal status, planned radiotherapy, and planned docetaxel use. The primary outcome was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who started treatment. A fixed-effects meta-analysis of individual patient data was used to compare differences in survival between the two trials. STAMPEDE is registered with ClinicalTrials.gov (NCT00268476) and ISRCTN (ISRCTN78818544). Findings: Between Nov 15, 2011, and Jan 17, 2014, 1003 patients were randomly assigned to standard of care (n=502) or standard of care plus abiraterone (n=501) in the abiraterone trial. Between July 29, 2014, and March 31, 2016, 916 patients were randomly assigned to standard of care (n=454) or standard of care plus abiraterone and enzalutamide (n=462) in the abiraterone and enzalutamide trial. Median follow-up was 96 months (IQR 86–107) in the abiraterone trial and 72 months (61–74) in the abiraterone and enzalutamide trial. In the abiraterone trial, median overall survival was 76·6 months (95% CI 67·8–86·9) in the abiraterone group versus 45·7 months (41·6–52·0) in the standard of care group (hazard ratio [HR] 0·62 [95% CI 0·53–0·73]; p<0·0001). In the abiraterone and enzalutamide trial, median overall survival was 73·1 months (61·9–81·3) in the abiraterone and enzalutamide group versus 51·8 months (45·3–59·0) in the standard of care group (HR 0·65 [0·55–0·77]; p<0·0001). We found no difference in the treatment effect between these two trials (interaction HR 1·05 [0·83–1·32]; pinteraction=0·71) or between-trial heterogeneity (I2 p=0·70). In the first 5 years of treatment, grade 3–5 toxic effects were higher when abiraterone was added to standard of care (271 [54%] of 498 vs 192 [38%] of 502 with standard of care) and the highest toxic effects were seen when abiraterone and enzalutamide were added to standard of care (302 [68%] of 445 vs 204 [45%] of 454 with standard of care). Cardiac causes were the most common cause of death due to adverse events (five [1%] with standard of care plus abiraterone and enzalutamide [two attributed to treatment] and one (<1%) with standard of care in the abiraterone trial). Interpretation: Enzalutamide and abiraterone should not be combined for patients with prostate cancer starting long-term androgen deprivation therapy. Clinically important improvements in survival from addition of abiraterone to androgen deprivation therapy are maintained for longer than 7 years. Funding: Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas

    ACCESSIBLE PATH FINDING FOR HISTORIC URBAN ENVIRONMENTS: FEATURE EXTRACTION AND VECTORIZATION FROM POINT CLOUDS

    Get PDF
    Sidewalk inventory is a topic whose importance is increasing together with the widespread use of smart city management. In order to manage the city properly and to make informed decisions, it is necessary to know the real conditions of the city. Furthermore, when planning and calculating cultural routes within the city, these routes must take into account the specific needs of all users. Therefore, it is important to know the conditions of the city's sidewalk network and also their physical and geometrical characteristics. Typically, sidewalk network are generated basing on existing cartographic data, and sidewalk attributes are gathered through crowdsourcing. In this paper, the sidewalk network of an historic city was produced starting from point cloud data. The point cloud was semantically segmented in "roads"and "sidewalks", and then the cluster of points of sidewalks surfaces were used to compute sidewalk attributes and to generate a vector layer composed of nodes and edges. The vector layer was then used to compute accessible paths between Points of Interest, using QGIS. The tests made on a real case study, the historic city and UNESCO site of Sabbioneta (Italy), shows a vectorization accuracy of 98.7%. In future, the vector layers and the computed paths could be used to generate maps for city planners, and to develop web or mobile phones routing apps

    Sidewalk detection and pavement characterisation in historic urban environments from point clouds: Preliminary results

    Get PDF
    The definition of physical accessibility in urban environments is a topic of recognized importance by policy makers and by international organizations. A first step to address the accessibility topic is the definition and characterisation of urban elements, like sidewalks, roads, and ramps. Sidewalk inventory plays a crucial role in this phase. In literature there are several ways to extract sidewalks from a point cloud, but they are all tailored on modern and standardized situations. For example the presence of a curb is assumed as the normality and the roads are supposed to have the same width along the path. When dealing with an Urban Heritage, some difficulties arise. In fact, in an historic urban environment ground irregularities should be taken in consideration: the paving is composed by different materials, curbs are not always present, and a Z difference between road and sidewalks is not so sure. In such cases existing methodologies cannot be applied. This paper present a method to semantically segment a point cloud, labelling sidewalks and roads. Sidewalks are also characterized by detecting their pavings. The method is tested on an Urban Heritage: the Unesco site of Sabbioneta, in northern Italy. The results are promising, sidewalks are detected with a precision of 80%, main errors are in corner areas. Paving characterisation is based on thresholds derived from some samples, and the method shows an high precision (more than 90%) in all the pavings considered

    A DATA COLLECTION FRAMEWORK FOR MANAGING ACCESSIBILITY AND INCLUSION IN URBAN HERITAGE

    Get PDF
    The successful implementation of inclusive design strategies cannot overlook the development of a preliminary phase aimed at gathering accessibility data of the built environment. This set of information helps achieve two major objectives: planning measures for improving the fruition of a city and communicating to end users the opportunities to exploit places. Specifically, this is fundamental in Cultural Heritage contexts both to survey their specific features and convey their historical values. To this end, such information must be accurate and gathered quickly. This paper aims to provide a set of parameters through which it is possible to comprehensively assess accessibility of Urban Heritage environments. Particularly, such task has been carried out in a more general framework targeted to investigate, how and by which tools, the current design practice achieve the aforementioned objectives. The article proposes a geometric survey through Mobile Laser Scanning system as a data gathering tool. The semantic segmentation of the resulting point cloud is envisioned as a suitable method for the extraction of the accessibility parameters proposed. Basing on first tests applied on a case study, a UNESCO site, the article provides and discusses a final proposal for the best data processing and validation, in addition to the key tools for sharing this information
    corecore