21,401 research outputs found
Uncertainties in gas kinematics arising from stellar continuum modelling in integral field spectroscopy data: the case of NGC2906 observed with MUSE/VLT
We study how the use of several stellar subtraction methods and line fitting
approaches can affect the derivation of the main kinematic parameters (velocity
and velocity dispersion fields) of the ionized gas component. The target of
this work is the nearby galaxy NGC 2906, observed with the MUSE instrument at
Very Large Telescope. A sample of twelve spectra is selected from the inner
(nucleus) and outer (spiral arms) regions, characterized by different
ionization mechanisms. We compare three different methods to subtract the
stellar continuum (FIT3D, STARLIGHT and pPXF), combined with one of the
following stellar libraries: MILES, STELIB and GRANADA+MILES. The choice of the
stellar subtraction method is the most important ingredient affecting the
derivation of the gas kinematics, followed by the choice of the stellar library
and by the line fitting approach. In our data, typical uncertainties in the
observed wavelength and width of the H\alpha and [NII] lines are of the order
of _rms \sim 0.1\AA\ and _rms \sim 0.2\AA\ (\sim 5
and 10km/s, respectively). The results obtained from the [NII] line seem to be
slightly more robust, as it is less affected by stellar absorption than
H\alpha. All methods considered yield statistically consistent measurements
once a mean systemic contribution
\Delta\bar\lambda=\Delta\bar\sigma=0.2xDelta_{MUSE} is added in quadrature to
the line fitting errors, where \Delta_{MUSE} = 1.1\AA\ \sim 50 km/s denotes the
instrumental resolution of the MUSE spectra. Although the subtraction of the
stellar continuum is critical in order to recover line fluxes, any method
(including none) can be used in order to measure the gas kinematics, as long as
an additional component of 0.2 x Delta_MUSE is added to the error budget.Comment: 20 pages, 14 figure
A Note on Scalar Field Theory in AdS_3/CFT_2
We consider a scalar field theory in AdS_{d+1}, and introduce a formalism on
surfaces at equal values of the radial coordinate. In particular, we define the
corresponding conjugate momentum. We compute the Noether currents for
isometries in the bulk, and perform the asymptotic limit on the corresponding
charges. We then introduce Poisson brackets at the border, and show that the
asymptotic values of the bulk scalar field and the conjugate momentum transform
as conformal fields of scaling dimensions \Delta_{-} and \Delta_{+},
respectively, where \Delta_{\pm} are the standard parameters giving the
asymptotic behavior of the scalar field in AdS. Then we consider the case d=2,
where we obtain two copies of the Virasoro algebra, with vanishing central
charge at the classical level. An AdS_3/CFT_2 prescription, giving the
commutators of the boundary CFT in terms of the Poisson brackets at the border,
arises in a natural way. We find that the boundary CFT is similar to a
generalized ghost system. We introduce two different ground states, and then
compute the normal ordering constants and quantum central charges, which depend
on the mass of the scalar field and the AdS radius. We discuss certain
implications of the results.Comment: 24 pages. v2: added minor clarification. v3: added several comments
and discussions, abstract sligthly changed. Version to be publishe
Solving the SUSY CP problem with flavor breaking F-terms
Supersymmetric flavor models for the radiative generation of fermion masses
offer an alternative way to solve the SUSY-CP problem. We assume that the
supersymmetric theory is flavor and CP conserving. CP violating phases are
associated to the vacuum expectation values of flavor violating susy-breaking
fields. As a consequence, phases appear at tree level only in the soft
supersymmetry breaking matrices. Using a U(2) flavor model as an example we
show that it is possible to generate radiatively the first and second
generation of quark masses and mixings as well as the CKM CP phase. The
one-loop supersymmetric contributions to EDMs are automatically zero since all
the relevant parameters in the lagrangian are flavor conserving and as a
consequence real. The size of the flavor and CP mixing in the susy breaking
sector is mostly determined by the fermion mass ratios and CKM elements. We
calculate the contributions to epsilon, epsilon^{prime} and to the CP
asymmetries in the B decays to psi Ks, phi Ks, eta^{\prime} Ks and Xs gamma. We
analyze a case study with maximal predictivity in the fermion sector. For this
worst case scenario the measurements of Delta mK, Delta mB and epsilon
constrain the model requiring extremely heavy squark spectra.Comment: 21 pages, RevTex
Nonminimal supersymmetric standard model with lepton number violation
We carry out a detailed analysis of the nonminimal supersymmetric standard
model with lepton number violation. The model contains a unique trilinear
lepton number violating term in the superpotential which can give rise to
neutrino masses at the tree level. We search for the gauged discrete symmetries
realized by cyclic groups which preserve the structure of the associated
trilinear superpotential of this model, and which satisfy the constraints of
the anomaly cancellation. The implications of this trilinear lepton number
violating term in the superpotential and the associated soft supersymmetry
breaking term on the phenomenology of the light neutrino masses and mixing is
studied in detail. We evaluate the tree and loop level contributions to the
neutrino mass matrix in this model. We search for possible suppression
mechanism which could explain large hierarchies and maximal mixing angles.Comment: Latex file, 43 pages, 2 figure
Effects of interdot dipole coupling in mesoscopic epitaxial Fe(100) dot arrays
The domain structure and the coercivity of epitaxial Fe(100) circular dot arrays of different diameters and separations have been studied using magnetic force microscopy (MFM) and focused magneto-optical Kerr effect (MOKE). The MFM images of the 1 µm diameter single domain dot arrays show direct evidence of strong interdot dipole coupling when the separation is reduced down to 0.1 µm. The coercivity of the dots is also found to be dependent on the separation, indicating the effect of the interdot dipole coupling on the magnetization reversal process
Synthesis of zeolite A using raw kaolin from Ethiopia and its application in removal of Cr(III) from tannery wastewater
BACKGROUND: The commercial production of zeolite A mainly involves costly synthetic chemicals. However, cheaper raw materials such as clay minerals, coal ashes, natural zeolites, solid wastes and industrial sludge have been tested. Based on this, the objective of the present study is synthesis of zeolite A from two sources of raw kaolins (Ansho and Bombowha) from Ethiopia and evaluation of its application in tannery wastewater treatment. RESULTS: The synthesis result indicated high crystallinity (>90%) of zeolite A using Ansho kaolin. Lower grade Bombowha kaolin yielded zeolite A with crystallinity of 80%. In the tannery wastewater treatment study, a real sample having chromium concentration of 2036 mg L-1 was treated, obtaining 99.8% removal and about 200 mg g-1 adsorption capacity of Cr(III) using 100 g L-1 and 5 g L-1 adsorbent dose, respectively. This indicated that the synthesized zeolite A has great potential for Cr(III) removal from tannery wastewater. CONCLUSION: In this study, zeolite A has been synthesized from two sources of kaolin from Ethiopia and has been evaluated in tannery wastewater treatment. The synthesis result indicated the formation of crystals of zeolite A with optimum crystallinity of 91% and the material exhibited chromium removal efficiency of 99.8%
Angular momentum effects in Michelson-Morley type experiments
The effect of the angular momentum density of a gravitational source on the
times of flight of light rays in an interferometer is analyzed. The calculation
is made imagining that the interferometer is at the equator of the gravity
source and, as long as possible, the metric, provided it is stationary and
axisymmetric, is not approximated. Finally, in order to evaluate the size of
the effect in the case of the Earth a weak field approximation is introduced.
For laboratory scales and non-geodesic paths the correction turns out to be
comparable with the sensitivity expected in gravitational waves interferometric
detectors, whereas it drops under the threshold of detectability when using
free (geodesic) light rays.Comment: 12 pages, LaTeX; more about the detection technique, references
added; accepted for publication in GR
Dynamical and spectral properties of complex networks
Dynamical properties of complex networks are related to the spectral
properties of the Laplacian matrix that describes the pattern of connectivity
of the network. In particular we compute the synchronization time for different
types of networks and different dynamics. We show that the main dependence of
the synchronization time is on the smallest nonzero eigenvalue of the Laplacian
matrix, in contrast to other proposals in terms of the spectrum of the
adjacency matrix. Then, this topological property becomes the most relevant for
the dynamics.Comment: 14 pages, 5 figures, to be published in New Journal of Physic
- …