21,401 research outputs found

    Uncertainties in gas kinematics arising from stellar continuum modelling in integral field spectroscopy data: the case of NGC2906 observed with MUSE/VLT

    Full text link
    We study how the use of several stellar subtraction methods and line fitting approaches can affect the derivation of the main kinematic parameters (velocity and velocity dispersion fields) of the ionized gas component. The target of this work is the nearby galaxy NGC 2906, observed with the MUSE instrument at Very Large Telescope. A sample of twelve spectra is selected from the inner (nucleus) and outer (spiral arms) regions, characterized by different ionization mechanisms. We compare three different methods to subtract the stellar continuum (FIT3D, STARLIGHT and pPXF), combined with one of the following stellar libraries: MILES, STELIB and GRANADA+MILES. The choice of the stellar subtraction method is the most important ingredient affecting the derivation of the gas kinematics, followed by the choice of the stellar library and by the line fitting approach. In our data, typical uncertainties in the observed wavelength and width of the H\alpha and [NII] lines are of the order of _rms \sim 0.1\AA\ and _rms \sim 0.2\AA\ (\sim 5 and 10km/s, respectively). The results obtained from the [NII] line seem to be slightly more robust, as it is less affected by stellar absorption than H\alpha. All methods considered yield statistically consistent measurements once a mean systemic contribution \Delta\bar\lambda=\Delta\bar\sigma=0.2xDelta_{MUSE} is added in quadrature to the line fitting errors, where \Delta_{MUSE} = 1.1\AA\ \sim 50 km/s denotes the instrumental resolution of the MUSE spectra. Although the subtraction of the stellar continuum is critical in order to recover line fluxes, any method (including none) can be used in order to measure the gas kinematics, as long as an additional component of 0.2 x Delta_MUSE is added to the error budget.Comment: 20 pages, 14 figure

    A Note on Scalar Field Theory in AdS_3/CFT_2

    Get PDF
    We consider a scalar field theory in AdS_{d+1}, and introduce a formalism on surfaces at equal values of the radial coordinate. In particular, we define the corresponding conjugate momentum. We compute the Noether currents for isometries in the bulk, and perform the asymptotic limit on the corresponding charges. We then introduce Poisson brackets at the border, and show that the asymptotic values of the bulk scalar field and the conjugate momentum transform as conformal fields of scaling dimensions \Delta_{-} and \Delta_{+}, respectively, where \Delta_{\pm} are the standard parameters giving the asymptotic behavior of the scalar field in AdS. Then we consider the case d=2, where we obtain two copies of the Virasoro algebra, with vanishing central charge at the classical level. An AdS_3/CFT_2 prescription, giving the commutators of the boundary CFT in terms of the Poisson brackets at the border, arises in a natural way. We find that the boundary CFT is similar to a generalized ghost system. We introduce two different ground states, and then compute the normal ordering constants and quantum central charges, which depend on the mass of the scalar field and the AdS radius. We discuss certain implications of the results.Comment: 24 pages. v2: added minor clarification. v3: added several comments and discussions, abstract sligthly changed. Version to be publishe

    Solving the SUSY CP problem with flavor breaking F-terms

    Full text link
    Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The one-loop supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to epsilon, epsilon^{prime} and to the CP asymmetries in the B decays to psi Ks, phi Ks, eta^{\prime} Ks and Xs gamma. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of Delta mK, Delta mB and epsilon constrain the model requiring extremely heavy squark spectra.Comment: 21 pages, RevTex

    Nonminimal supersymmetric standard model with lepton number violation

    Get PDF
    We carry out a detailed analysis of the nonminimal supersymmetric standard model with lepton number violation. The model contains a unique trilinear lepton number violating term in the superpotential which can give rise to neutrino masses at the tree level. We search for the gauged discrete symmetries realized by cyclic groups which preserve the structure of the associated trilinear superpotential of this model, and which satisfy the constraints of the anomaly cancellation. The implications of this trilinear lepton number violating term in the superpotential and the associated soft supersymmetry breaking term on the phenomenology of the light neutrino masses and mixing is studied in detail. We evaluate the tree and loop level contributions to the neutrino mass matrix in this model. We search for possible suppression mechanism which could explain large hierarchies and maximal mixing angles.Comment: Latex file, 43 pages, 2 figure

    Effects of interdot dipole coupling in mesoscopic epitaxial Fe(100) dot arrays

    Get PDF
    The domain structure and the coercivity of epitaxial Fe(100) circular dot arrays of different diameters and separations have been studied using magnetic force microscopy (MFM) and focused magneto-optical Kerr effect (MOKE). The MFM images of the 1 µm diameter single domain dot arrays show direct evidence of strong interdot dipole coupling when the separation is reduced down to 0.1 µm. The coercivity of the dots is also found to be dependent on the separation, indicating the effect of the interdot dipole coupling on the magnetization reversal process

    Synthesis of zeolite A using raw kaolin from Ethiopia and its application in removal of Cr(III) from tannery wastewater

    Get PDF
    BACKGROUND: The commercial production of zeolite A mainly involves costly synthetic chemicals. However, cheaper raw materials such as clay minerals, coal ashes, natural zeolites, solid wastes and industrial sludge have been tested. Based on this, the objective of the present study is synthesis of zeolite A from two sources of raw kaolins (Ansho and Bombowha) from Ethiopia and evaluation of its application in tannery wastewater treatment. RESULTS: The synthesis result indicated high crystallinity (>90%) of zeolite A using Ansho kaolin. Lower grade Bombowha kaolin yielded zeolite A with crystallinity of 80%. In the tannery wastewater treatment study, a real sample having chromium concentration of 2036 mg L-1 was treated, obtaining 99.8% removal and about 200 mg g-1 adsorption capacity of Cr(III) using 100 g L-1 and 5 g L-1 adsorbent dose, respectively. This indicated that the synthesized zeolite A has great potential for Cr(III) removal from tannery wastewater. CONCLUSION: In this study, zeolite A has been synthesized from two sources of kaolin from Ethiopia and has been evaluated in tannery wastewater treatment. The synthesis result indicated the formation of crystals of zeolite A with optimum crystallinity of 91% and the material exhibited chromium removal efficiency of 99.8%

    Angular momentum effects in Michelson-Morley type experiments

    Get PDF
    The effect of the angular momentum density of a gravitational source on the times of flight of light rays in an interferometer is analyzed. The calculation is made imagining that the interferometer is at the equator of the gravity source and, as long as possible, the metric, provided it is stationary and axisymmetric, is not approximated. Finally, in order to evaluate the size of the effect in the case of the Earth a weak field approximation is introduced. For laboratory scales and non-geodesic paths the correction turns out to be comparable with the sensitivity expected in gravitational waves interferometric detectors, whereas it drops under the threshold of detectability when using free (geodesic) light rays.Comment: 12 pages, LaTeX; more about the detection technique, references added; accepted for publication in GR

    Dynamical and spectral properties of complex networks

    Full text link
    Dynamical properties of complex networks are related to the spectral properties of the Laplacian matrix that describes the pattern of connectivity of the network. In particular we compute the synchronization time for different types of networks and different dynamics. We show that the main dependence of the synchronization time is on the smallest nonzero eigenvalue of the Laplacian matrix, in contrast to other proposals in terms of the spectrum of the adjacency matrix. Then, this topological property becomes the most relevant for the dynamics.Comment: 14 pages, 5 figures, to be published in New Journal of Physic
    • …
    corecore