2 research outputs found

    Interface formation during the growth of phase change material heterostructures based on Ge-Rich Ge-Sb-Te alloys

    Get PDF
    In this study, we present a full characterization of the electronic properties of phase change material (PCM) double-layered heterostructures deposited on silicon substrates. Thin films of amorphous Ge-rich Ge-Sb-Te (GGST) alloys were grown by physical vapor deposition on Sb2Te3 and on Ge2Sb2Te5 layers. The two heterostructures were characterized in situ by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS) during the formation of the interface between the first and the second layer (top GGST film). The evolution of the composition across the heterostructure interface and information on interdiffusion were obtained. We found that, for both cases, the final composition of the GGST layer was close to Ge2SbTe2 (GST212), which is a thermodynamically favorable off-stoichiometry GeSbTe alloy in the Sb-GeTe pseudobinary of the ternary phase diagram. Density functional theory calculations allowed us to calculate the density of states for the valence band of the amorphous phase of GST212, which was in good agreement with the experimental valence bands measured in situ by UPS. The same heterostructures were characterized by X-ray diffraction as a function of the annealing temperature. Differences in the crystallization process are discussed on the basis of the photoemission results

    Toward sustainable electronics: exploiting the potential of a biodegradable cellulose blend for photolithographic processes and eco‐friendly devices

    No full text
    Flexible electronics has emerged as a promising field for the development of electronic devices with applications in wearables, biomedical sensors, and edible electronics. Biomaterials play a crucial role in fabricating flexible substrates, and the utilization of polymer blends offers exciting possibilities for tuning mechanical and chemical properties. This paper highlights the potential of a novel polymer blend based on ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) in the fabrication of substrates for flexible electronics. By blending the two cellulose ethers, it is possible to tune the mechanical and chemical properties of the final substrate, tailored to meet specific requirements. To exploit such innovative green substrates for photolithographic processes, their stability, and processability is extensively investigated. The feasibility of photolithographic processes on such biodegradable and edible substrates is demonstrated by fabricating both resistive and capacitive sensors through standard photolithographic processes, presenting a breakthrough in terms of applicability. The utilization of such biomaterials holds tremendous potential for driving technological advancements in various fields. These materials pave the way for innovative devices catering to diverse applications, from agriculture to food and biomedicine. Importantly, they also promote a sustainable approach for their fabrication, laying the foundation for an environment-aware future of technological progress
    corecore