17,776 research outputs found

    Probing the Effects of Lorentz-Symmetry Violating Chern-Simons and Ricci-Cotton Terms in Higher Derivative Gravity

    Full text link
    The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of operators that splits the fundamental fields according to their individual degrees of freedom. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes gets a new insight. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a time-like vector of the type vμ=(μ,0)v^{\mu} = (\mu,\vec{0}). Spectral consistency imposes taht the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to usual gauge theories whenever conditions for suppression of tachyons and ghosts are required.Comment: 15 pages. It coincides with the version published in Phys. Rev.

    Universal geometrical scaling of the elliptic flow

    Full text link
    The presence of scaling variables in experimental observables provide very valuable indications of the dynamics underlying a given physical process. In the last years, the search for geometric scaling, that is the presence of a scaling variable which encodes all geometrical information of the collision as well as other external quantities as the total energy, has been very active. This is motivated, in part, for being one of the genuine predictions of the Color Glass Condensate formalism for saturation of partonic densities. Here we extend these previous findings to the case of experimental data on elliptic flow. We find an excellent scaling for all centralities and energies, from RHIC to LHC, with a simple generalization of the scaling previously found for other observables and systems. Interestingly the case of the photons, difficult to reconcile in most formalisms, nicely fit the scaling curve. We discuss the possible interpretations of this finding in terms of initial or final state effects.Comment: 6 pages, 4 figures, accepted for publication in Phys Rev

    Half Quantization

    Full text link
    A general dynamical system composed by two coupled sectors is considered. The initial time configuration of one of these sectors is described by a set of classical data while the other is described by standard quantum data. These dynamical systems will be named half quantum. The aim of this paper is to derive the dynamical evolution of a general half quantum system from its full quantum formulation. The standard approach would be to use quantum mechanics to make predictions for the time evolution of the half quantum initial data. The main problem is how can quantum mechanics be applied to a dynamical system whose initial time configuration is not described by a set of fully quantum data. A solution to this problem is presented and used, as a guideline to obtain a general formulation of coupled classical-quantum dynamics. Finally, a quantization prescription mapping a given classical theory to the correspondent half quantum one is presented.Comment: 20 pages, LaTex file, Substantially revised versio

    A new form of the rotating C-metric

    Full text link
    In a previous paper, we showed that the traditional form of the charged C-metric can be transformed, by a change of coordinates, into one with an explicitly factorizable structure function. This new form of the C-metric has the advantage that its properties become much simpler to analyze. In this paper, we propose an analogous new form for the rotating charged C-metric, with structure function G(\xi)=(1-\xi^2)(1+r_{+}A\xi)(1+r_{-}A\xi), where r_\pm are the usual locations of the horizons in the Kerr-Newman black hole. Unlike the non-rotating case, this new form is not related to the traditional one by a coordinate transformation. We show that the physical distinction between these two forms of the rotating C-metric lies in the nature of the conical singularities causing the black holes to accelerate apart: the new form is free of torsion singularities and therefore does not contain any closed timelike curves. We claim that this new form should be considered the natural generalization of the C-metric with rotation.Comment: 13 pages, LaTe

    Generation of higher derivatives operators and electromagnetic wave propagation in a Lorentz-violation scenario

    Full text link
    We study the perturbative generation of higher-derivative operators as corrections to the photon effective action, which are originated from a Lorentz violation background. Such corrections are obtained, at one-loop order, through the proper-time method, using the zeta function regularization. We focus over the lowest order corrections and investigate their influence in the propagation of electromagnetic waves through the vacuum, in the presence of a strong, constant magnetic field. This is a setting of experimental relevance, since it bases active efforts to measure non linear electromagnetic effects. After surprising cancellations of Lorentz violating corrections to the Maxwell's equation, we show that no effects of the kind of Lorentz violation we consider can be detected in such a context.Comment: v2: 13 pages, no figures, section IV considerably rewritten, main results unchanged and are now obtained in a simpler way. To appear in PL

    Closing the SU(3)LU(1)XSU(3)_L\otimes U(1)_X Symmetry at Electroweak Scale

    Full text link
    We show that some models with SU(3)CSU(3)LU(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)L+RSU(2)_{L+R} symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)XU(1)_X's coupling constant, gXg_X, the sine of the weak mixing angle sinθW\sin\theta_W, and the mass of the WW boson, MWM_W. In the limit in which this symmetry is valid it avoids the tree level mixing of the ZZ boson of the Standard Model with the extra ZZ^\prime boson. We have verified that the oblique TT parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)L+RSU(3)_{L+R} custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, being the see-saw mechanism mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)L+RSU(3)L+RSU(2)_{L+R}\subset SU(3)_{L+R} symmetry implies that the extra non-standard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.Comment: 32 pages, no figure, RevTeX. Some typos correcte
    corecore