19,968 research outputs found

    Exact Renormalization of Massless QED2

    Full text link
    We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.Comment: 14 pages, no figures, introduction and conclusions modifie

    Scaling limit for a drainage network model

    Full text link
    We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed by Fontes, Isopi, Newman and Ravishankar.Comment: 15 page

    Regularity at infinity of real mappings and a Morse-Sard theorem

    Full text link
    We prove a new Morse-Sard type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C2C^2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the tt-regularity and its bridge toward the ρ\rho-regularity which implies topological triviality at infinity

    Evading the Few TeV Perturbative Limit in 3-3-1 Models

    Full text link
    Some versions of the electroweak SU(3)_L\otimesU(1)_X models cannot be treated within perturbation theory at energies of few TeV. An extended version for these models is proposed which is perturbative even at TeV scale posing no threatening inconsistency for test at future colliders. The extension presented here needs the addition of three octets of vector leptons, which leave three new leptonic isotriplets in the SU(2)_L\otimesU(1)_Y subgroup. With this representation content the running of the electroweak mixing angle, θW(μ)\theta_W (\mu), is such that sin2θW(μ)\sin^2\theta_W(\mu) decreases with the increase of the energy scale μ\mu, when only the light states of the Standard Model group are considered. The neutral exotic gauge boson ZZ^\prime marks then a new symmetry frontier.Comment: 15 pages, 2 figures, minor correction

    Models for the 3-D axisymmetric gravitational potential of the Milky Way Galaxy - A detailed modelling of the Galactic disk

    Full text link
    Aims. Galaxy mass models based on simple and analytical functions for the density and potential pairs have been widely proposed in the literature. Disk models constrained by kinematic data alone give information on the global disk structure only very near the Galactic plane. We attempt to circumvent this issue by constructing disk mass models whose three-dimensional structures are constrained by a recent Galactic star counts model in the near-infrared and also by observations of the hydrogen distribution in the disk. Our main aim is to provide models for the gravitational potential of the Galaxy that are fully analytical but also with a more realistic description of the density distribution in the disk component. Methods. From the disk model directly based on the observations (here divided into the thin and thick stellar disks and the HI and H2_2 disks subcomponents), we produce fitted mass models by combining three Miyamoto-Nagai disk profiles of any "model order" (1, 2, or 3) for each disk subcomponent. The Miyamoto-Nagai disks are combined with models for the bulge and "dark halo" components and the total set of parameters is adjusted by observational kinematic constraints. A model which includes a ring density structure in the disk, beyond the solar Galactic radius, is also investigated. Results. The Galactic mass models return very good matches to the imposed observational constraints. In particular, the model with the ring density structure provides a greater contribution of the disk to the rotational support inside the solar circle. The gravitational potential models and their associated force-fields are described in analytically closed forms, and in addition, they are also compatible with our best knowledge of the stellar and gas distributions in the disk component. The gravitational potential models are suited for investigations of orbits in the Galactic disk.Comment: 22 pages, 13 figures, 11 tables, accepted for publication in A&

    Mechanism of magnetostructural transformation in multifunctional Mn3_3GaC

    Full text link
    Mn3_3GaC undergoes a ferromagnetic to antiferromagnetic, volume discontinuous cubic-cubic phase transition as a function of temperature, pressure and magnetic field. Through a series of temperature dependent x-ray absorption fine structure spectroscopy experiments at the Mn K and Ga K edge, it is shown that the first order magnetic transformation in Mn3_3GaC is entirely due to distortions in Mn sub-lattice and with a very little role for Mn-C interactions. The distortion in Mn sub-lattice results in long and short Mn-Mn bonds with the longer Mn-Mn bonds favoring ferromagnetic interactions and the shorter Mn-Mn bonds favoring antiferromagnetic interactions. At the first order transition, the shorter Mn-Mn bonds exhibit an abrupt decrease in their length resulting in an antiferromagnetic ground state and a strained lattice.Comment: Accepted in J. Appl. Phys. Please contact authors for supplementary informatio

    Local Runup Amplification By Resonant Wave Interactions

    Get PDF
    Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leading elevation and depression waves.Comment: 10 pages, 7 Figures. Accepted to Physical Review Letters. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh
    corecore