657 research outputs found
The leading particle effect from light quark fragmentation in charm hadroproduction
The asymmetry of and meson production in scattering
observed by the E791 experiment is a typical phenomenon known as the leading
particle effect in charm hadroproducton. We show that the phenomenon can be
explained by the effect of light quark fragmentation into charmed hadrons
(LQF). Meanwhile, the size of the LQF effect is estimated from data of the E791
experiment.
A comparison is made with the estimate of the LQF effect from prompt
like-sign dimuon rate in neutrino experiments. The influence of the LQF effect
on the measurement of nucleon strange distribution asymmetry from charged
current charm production processes is briefly discussed.Comment: 6 latex pages, 1 figure, to appear in EPJ
Doubly charged Higgs from - scattering in the 3-3-1 Model
We studied the production and signatures of doubly charged Higgs bosons in
the process , where is a heavy lepton,
at the International Linear Collider (ILC) and CERN Linear Collider
(CLIC). The intermediate photons are given by the Weizscker-Williams
and laser backscattering distributions. We found that significant signatures
are obtained by bremsstrahlung and backward Comptom scattering of laser. A
clear signal can be obtained for doubly charged Higgs bosons, doubly charged
gauge bosons and heavy leptons
Explaining the Higgs Decays at the LHC with an Extended Electroweak Model
We show that the recent discovery of a new boson at the LHC, which we assume
to be a Higgs boson, and the observed enhancement in its diphoton decays
compared to the SM prediction, can be explained by a new doublet of charged
vector bosons from an extended electroweak gauge sector model with
SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good
agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs
boson and the experimental significance observed in the diphoton channel at the
8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also
taken into account, in order to anticipate a possible confirmation of deficits
in the branching ratios into , , bottom quarks, and tau leptons.Comment: 16 pages, 5 figure
Non-Perturbative QCD Treatment of High-Energy Hadron-Hadron Scattering
Total cross-sections and logarithmic slopes of the elastic scattering
cross-sections for different hadronic processes are calculated in the framework
of the model of the stochastic vacuum. The relevant parameters of this model, a
correlation length and the gluon condensate, are determined from scattering
data, and found to be in very good agreement with values coming from completely
different sources of information. A parameter-free relation is given between
total cross-sections and slope parameters, which is shown to be remarkably
valid up to the highest energies for which data exist.Comment: 60 pages, Heidelberg preprin
Synthesis, Characterization, Dft And Td-dft Study Of The [fe(mnt)(l)(f-bunc)2] Octahedral Complex (l = Phen, Bipy)
FeBr2 has reacted with an equivalent of mnt2- (mnt = cis-1,2-dicyanoethylene-1,2-dithiolate) and the a-diimine L (L = 1,10-phenantroline, 2,2'-bipyridine) in THF solution, and followed by adding of t-butyl-isocyanide to give [Fe(mnt)(L)(t-BuNC)2] neutral compound. The products were characterized by infrared, UV-visible and Mössbauer spectroscopy, besides thermogravimetric and conductivity data. The geometry in the equilibrium was calculated by the density functional theory and the electronic spectrum by the time-dependent. The experimental and theoretical, results in good agreement have defined an octahedral geometry with two isocyanide neighbours. The Ïâ Ïz.ast; intraligand electronic transition was not observed for cis-isomers in the near-IR spectral, region.32718121817+S1-S2Makedonas, C., Mitsopoulou, C.A., Laholz, F.J., Balana, A.I., (2003) Inorg. Chem., 42, p. 8853. , See references inZuleta, J.A., Bevilacqua, J.M., Proserpio, D.M., Harvey, P.D., Eisenberg, R., (1992) Inorg. Chem., 31, p. 2396Connick, W.B., Geiger, D., Eisenberg, R., (1999) Inorg. Chem., 38, p. 3264Torres, R.A., Lovell, T., Noodleman, L., Case, D.A., (2003) J. Am. Chem, Soc., 125, p. 1923MĂŒller-Westerhoff, U.T., Vance, B., Yoon, D.I., (1991) Tetrahedron, 47, p. 909Beinert, H., (2000) J. Biol. Inorg. Chem., 5, p. 2Hamilton, W.C., Bernal, I., (1967) Inorg. Chem., 6, p. 2003Kanatzidis, M.G., Coucouvanis, D., (1984) Inorg. Chem., 23, p. 403Morigaki, M.K., Da Silva, E.M., De Melo, C.V.P., Larica, C., Biondo, A., Freitas, J.C.C., Dias, G.H.M., Ribeiro, H.R., (2004) Quim. Nova, 27, p. 76Gokel, G.W., Widera, R.P., Weber, W.P., (1976) Org. Synth., 55, p. 96Wold, A., Ruff, J.K., (1973) Inorg. Synth., 14, p. 102Davison, A., Holm, R.H., (1967) Inorg. Synth., 10, p. 8Locke, J., McCleverty, J.A., (1966) Inorg. Chem., 5, p. 1156Bickelhaupt, F.M., Baerends, E.J., (2000) Rev. Comput. Chem., 15, p. 1Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Van Gisbergen, S.J.A., Fonseca Guerra, C., Snijders, J.G., Ziegler, T.J., (2001) Rev. Comput. Chem., 22, p. 931Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822Snijders, J.G., (1978) Mol. Phys., 36, p. 1789Snijders, J.G., Ros, P., (1979) Mol. Phys., 38, p. 1909Morokuma, K., (1971) J. Chem Phys., 55, p. 1236Ziegler, T., Rauk, A., (1977) Theor. Chim. Acta, 46, p. 1Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2003) Gaussian, , Gaussian, Inc., Pittsburgh PABecke, A.D., (1993) J. Chem. Phys., 98, p. 5648Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 299Neese, F., (2000) Inorg. Chim. Acta, 337, p. 181Neese, F., ORCA - An Ab Initio, Density Functional and Semi-empirical Program Package, , Version 2.2, Revision 73SchĂ€fter, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., (1992) Can. J. Chem., 70, p. 560Geary, W.J., (1971) Coord. Chem. Rev., 7, p. 81GĂŒtlich, P., Link, R., Trautwe, A., (1978) Mössbauer Spectroscopy and Transition Metal Chemistry, , Springer: HeildelbergBiĂ€s, R., Guillin, J., Bominaar, E.L., Grodzicki, M., Marathe, V.R., Trautwein, A.X., (1987) J. Phys. B: At. Mol. Phys., 20, p. 258Paulsen, H., Kröckel, M., Grodzicki, M., Bill, E., Trautwein, A.X., Leight, G.J., Solver, J., (1995) Inorg. Chem., 34, p. 6244Lougear, A., Grodzicki, M., Bertoldi, C., Trautwein, A.X., Steiner, K., Amthauer, G., (1999) Phys. Chem. Miner., 27, p. 258Grodzicki, M., Flint, H., Winkler, H., Walker, A., Trautwein, A.X., (1997) J. Phys. Chem., A101, p. 4202Berrett, R.R., Fitzsimmons, B.W., (1967) J. Chem. Soc., A, p. 525Brancroft, G.M., Libbey, E.T., (1973) J. Chem. Soc., Dalton Trans., p. 2103Calogero, S., Russo, U., Conderelli, L.L., Fraga, I., (1979) Transition Met. Chem., 4, p. 156Souza, G.P., Konzen, C., Ardissom, J.D., De Abreu, H.A., Duarte, H.A., AlcĂąntara, A.R.C., Nunes, W.C., Stumpf, H.O., (2006) J. Braz. Chem. Soc., 17, p. 1534Greenwood, N.N., Gibb, T.C., (1971) Massbauer Spectroscopy, p. 117. , 1st ed., Chapman and Hall: LondonKoch, W., Holthausen, M.C., (2000) A Chemist's Guide to Density Functional Theory, , Wiley-VCH, WeinheimWolff, S.K., (2005) Int. J. Quantum Chem., 104, p. 645BĂ©rces, A., Ziegler, T., (1996) Top Curr. Chem., 182, p. 14Fournier, R., Papai, I., (1996) Recent Advances in Density Functional Methods, Part i, , Chong, D. P., ed.;World Scientific: New YorkSosa, C., Andzelm, J., Elkin, B.C., Wimmer, E., Dobbs, K.D., Dixon, D.A., (1992) J. Phys. Chem., 96, p. 6630Billig, E., Williams, R., Bemal, I., Waters, J.H., Gray, H.B., (1964) Inorg. Chem., 5, p. 663Dietz, O., RayĂłn, V.M., Frenking, G., (2003) Inorg. Chem., 42, p. 4977Loschen, C., Frenking, G., (2004) Inorg. Chem., 43, p. 778Massera, C., Frenking, G., (2003) Organometallics, 22, p. 2758Miller, J., Balch, A.L., Enemark, J.H., (1971) J. Am. Chem. Soc., 93, p. 4613Hulme, R., Powell, H.M., (1957) J. Chem. Soc., p. 719Joshi, K.K., Mills, O.S., Pauson, P.L., Shaw, B.W., Stubbs, W.H., (1965) Chemical Communications, p. 181Wilford, J.B., Smith, N.O., Powell, H.M., (1968) J. Chem. Soc., A, p. 1544Duboc-Toia, C., Menage, S., Vincent, J.M., Averbuch-Pouchot, M.T., Fontecave, M., (1997) Inorg. Chem., 36, p. 6148Gama, V., Henriques, R.T., Bonfait, G., Pereira, C.L., Waerenborgh, J.C., Santos, I.C., Duarte, M.T., Almeida, M., (1992) Inorg. Chem., 31, p. 2598Epstein, E.F., Bernai, I., (1977) Inorg. Chim. Acta, 25, p. 145Miyamae, H., Sato, S., Saito, Y., Sakai, K., Fukuyama, M., (1977) Acta Crystallogr., B33, p. 3942Sellmann, D., Kleffmann, U.K., Zapf, L., Huttner, G., Zsolnai, L., (1984) J. Organomet. Chem., 263, p. 321Hamilton, W.C., Bernal, I., (1967) Inorg. Chem., 6, p. 2003Nazeeruddin, K., Zakeemndin, S.M., Humphry-Baker, R., Gorelsky, S.I., Lever, A.B.P., GrĂ€tzel, M., (2000) Coord. Chem. Rev., 208, p. 21
Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations
The `local scaling' hypothesis, first introduced by Nieuwstadt two decades
ago, describes the turbulence structure of stable boundary layers in a very
succinct way and is an integral part of numerous local closure-based numerical
weather prediction models. However, the validity of this hypothesis under very
stable conditions is a subject of on-going debate. In this work, we attempt to
address this controversial issue by performing extensive analyses of turbulence
data from several field campaigns, wind-tunnel experiments and large-eddy
simulations. Wide range of stabilities, diverse field conditions and a
comprehensive set of turbulence statistics make this study distinct
- âŠ