657 research outputs found

    The leading particle effect from light quark fragmentation in charm hadroproduction

    Get PDF
    The asymmetry of D−D^- and D+D^+ meson production in π−N\pi^-N scattering observed by the E791 experiment is a typical phenomenon known as the leading particle effect in charm hadroproducton. We show that the phenomenon can be explained by the effect of light quark fragmentation into charmed hadrons (LQF). Meanwhile, the size of the LQF effect is estimated from data of the E791 experiment. A comparison is made with the estimate of the LQF effect from prompt like-sign dimuon rate in neutrino experiments. The influence of the LQF effect on the measurement of nucleon strange distribution asymmetry from charged current charm production processes is briefly discussed.Comment: 6 latex pages, 1 figure, to appear in EPJ

    Doubly charged Higgs from ee-Îł\gamma scattering in the 3-3-1 Model

    Full text link
    We studied the production and signatures of doubly charged Higgs bosons in the process γe−→H−−E+\gamma e^- \rightarrow H^{--}E^+, where E+E^+ is a heavy lepton, at the e−e+e^-e^+ International Linear Collider (ILC) and CERN Linear Collider (CLIC). The intermediate photons are given by the Weizsa¹\ddot{a}cker-Williams and laser backscattering distributions. We found that significant signatures are obtained by bremsstrahlung and backward Comptom scattering of laser. A clear signal can be obtained for doubly charged Higgs bosons, doubly charged gauge bosons and heavy leptons

    Explaining the Higgs Decays at the LHC with an Extended Electroweak Model

    Get PDF
    We show that the recent discovery of a new boson at the LHC, which we assume to be a Higgs boson, and the observed enhancement in its diphoton decays compared to the SM prediction, can be explained by a new doublet of charged vector bosons from an extended electroweak gauge sector model with SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs boson and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ∗ZZ^*, WW∗WW^*, bottom quarks, and tau leptons.Comment: 16 pages, 5 figure

    Non-Perturbative QCD Treatment of High-Energy Hadron-Hadron Scattering

    Full text link
    Total cross-sections and logarithmic slopes of the elastic scattering cross-sections for different hadronic processes are calculated in the framework of the model of the stochastic vacuum. The relevant parameters of this model, a correlation length and the gluon condensate, are determined from scattering data, and found to be in very good agreement with values coming from completely different sources of information. A parameter-free relation is given between total cross-sections and slope parameters, which is shown to be remarkably valid up to the highest energies for which data exist.Comment: 60 pages, Heidelberg preprin

    Synthesis, Characterization, Dft And Td-dft Study Of The [fe(mnt)(l)(f-bunc)2] Octahedral Complex (l = Phen, Bipy)

    Get PDF
    FeBr2 has reacted with an equivalent of mnt2- (mnt = cis-1,2-dicyanoethylene-1,2-dithiolate) and the a-diimine L (L = 1,10-phenantroline, 2,2'-bipyridine) in THF solution, and followed by adding of t-butyl-isocyanide to give [Fe(mnt)(L)(t-BuNC)2] neutral compound. The products were characterized by infrared, UV-visible and Mössbauer spectroscopy, besides thermogravimetric and conductivity data. The geometry in the equilibrium was calculated by the density functional theory and the electronic spectrum by the time-dependent. The experimental and theoretical, results in good agreement have defined an octahedral geometry with two isocyanide neighbours. The π→ πz.ast; intraligand electronic transition was not observed for cis-isomers in the near-IR spectral, region.32718121817+S1-S2Makedonas, C., Mitsopoulou, C.A., Laholz, F.J., Balana, A.I., (2003) Inorg. Chem., 42, p. 8853. , See references inZuleta, J.A., Bevilacqua, J.M., Proserpio, D.M., Harvey, P.D., Eisenberg, R., (1992) Inorg. Chem., 31, p. 2396Connick, W.B., Geiger, D., Eisenberg, R., (1999) Inorg. Chem., 38, p. 3264Torres, R.A., Lovell, T., Noodleman, L., Case, D.A., (2003) J. Am. Chem, Soc., 125, p. 1923MĂŒller-Westerhoff, U.T., Vance, B., Yoon, D.I., (1991) Tetrahedron, 47, p. 909Beinert, H., (2000) J. Biol. Inorg. Chem., 5, p. 2Hamilton, W.C., Bernal, I., (1967) Inorg. Chem., 6, p. 2003Kanatzidis, M.G., Coucouvanis, D., (1984) Inorg. Chem., 23, p. 403Morigaki, M.K., Da Silva, E.M., De Melo, C.V.P., Larica, C., Biondo, A., Freitas, J.C.C., Dias, G.H.M., Ribeiro, H.R., (2004) Quim. Nova, 27, p. 76Gokel, G.W., Widera, R.P., Weber, W.P., (1976) Org. Synth., 55, p. 96Wold, A., Ruff, J.K., (1973) Inorg. Synth., 14, p. 102Davison, A., Holm, R.H., (1967) Inorg. Synth., 10, p. 8Locke, J., McCleverty, J.A., (1966) Inorg. Chem., 5, p. 1156Bickelhaupt, F.M., Baerends, E.J., (2000) Rev. Comput. Chem., 15, p. 1Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Van Gisbergen, S.J.A., Fonseca Guerra, C., Snijders, J.G., Ziegler, T.J., (2001) Rev. Comput. Chem., 22, p. 931Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822Snijders, J.G., (1978) Mol. Phys., 36, p. 1789Snijders, J.G., Ros, P., (1979) Mol. Phys., 38, p. 1909Morokuma, K., (1971) J. Chem Phys., 55, p. 1236Ziegler, T., Rauk, A., (1977) Theor. Chim. Acta, 46, p. 1Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2003) Gaussian, , Gaussian, Inc., Pittsburgh PABecke, A.D., (1993) J. Chem. Phys., 98, p. 5648Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785Hay, P.J., Wadt, W.R., (1985) J. Chem. Phys., 82, p. 299Neese, F., (2000) Inorg. Chim. Acta, 337, p. 181Neese, F., ORCA - An Ab Initio, Density Functional and Semi-empirical Program Package, , Version 2.2, Revision 73SchĂ€fter, A., Horn, H., Ahlrichs, R., (1992) J. Chem. Phys., 97, p. 2571Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., (1992) Can. J. Chem., 70, p. 560Geary, W.J., (1971) Coord. Chem. Rev., 7, p. 81GĂŒtlich, P., Link, R., Trautwe, A., (1978) Mössbauer Spectroscopy and Transition Metal Chemistry, , Springer: HeildelbergBiĂ€s, R., Guillin, J., Bominaar, E.L., Grodzicki, M., Marathe, V.R., Trautwein, A.X., (1987) J. Phys. B: At. Mol. Phys., 20, p. 258Paulsen, H., Kröckel, M., Grodzicki, M., Bill, E., Trautwein, A.X., Leight, G.J., Solver, J., (1995) Inorg. Chem., 34, p. 6244Lougear, A., Grodzicki, M., Bertoldi, C., Trautwein, A.X., Steiner, K., Amthauer, G., (1999) Phys. Chem. Miner., 27, p. 258Grodzicki, M., Flint, H., Winkler, H., Walker, A., Trautwein, A.X., (1997) J. Phys. Chem., A101, p. 4202Berrett, R.R., Fitzsimmons, B.W., (1967) J. Chem. Soc., A, p. 525Brancroft, G.M., Libbey, E.T., (1973) J. Chem. Soc., Dalton Trans., p. 2103Calogero, S., Russo, U., Conderelli, L.L., Fraga, I., (1979) Transition Met. Chem., 4, p. 156Souza, G.P., Konzen, C., Ardissom, J.D., De Abreu, H.A., Duarte, H.A., AlcĂąntara, A.R.C., Nunes, W.C., Stumpf, H.O., (2006) J. Braz. Chem. Soc., 17, p. 1534Greenwood, N.N., Gibb, T.C., (1971) Massbauer Spectroscopy, p. 117. , 1st ed., Chapman and Hall: LondonKoch, W., Holthausen, M.C., (2000) A Chemist's Guide to Density Functional Theory, , Wiley-VCH, WeinheimWolff, S.K., (2005) Int. J. Quantum Chem., 104, p. 645BĂ©rces, A., Ziegler, T., (1996) Top Curr. Chem., 182, p. 14Fournier, R., Papai, I., (1996) Recent Advances in Density Functional Methods, Part i, , Chong, D. P., ed.;World Scientific: New YorkSosa, C., Andzelm, J., Elkin, B.C., Wimmer, E., Dobbs, K.D., Dixon, D.A., (1992) J. Phys. Chem., 96, p. 6630Billig, E., Williams, R., Bemal, I., Waters, J.H., Gray, H.B., (1964) Inorg. Chem., 5, p. 663Dietz, O., RayĂłn, V.M., Frenking, G., (2003) Inorg. Chem., 42, p. 4977Loschen, C., Frenking, G., (2004) Inorg. Chem., 43, p. 778Massera, C., Frenking, G., (2003) Organometallics, 22, p. 2758Miller, J., Balch, A.L., Enemark, J.H., (1971) J. Am. Chem. Soc., 93, p. 4613Hulme, R., Powell, H.M., (1957) J. Chem. Soc., p. 719Joshi, K.K., Mills, O.S., Pauson, P.L., Shaw, B.W., Stubbs, W.H., (1965) Chemical Communications, p. 181Wilford, J.B., Smith, N.O., Powell, H.M., (1968) J. Chem. Soc., A, p. 1544Duboc-Toia, C., Menage, S., Vincent, J.M., Averbuch-Pouchot, M.T., Fontecave, M., (1997) Inorg. Chem., 36, p. 6148Gama, V., Henriques, R.T., Bonfait, G., Pereira, C.L., Waerenborgh, J.C., Santos, I.C., Duarte, M.T., Almeida, M., (1992) Inorg. Chem., 31, p. 2598Epstein, E.F., Bernai, I., (1977) Inorg. Chim. Acta, 25, p. 145Miyamae, H., Sato, S., Saito, Y., Sakai, K., Fukuyama, M., (1977) Acta Crystallogr., B33, p. 3942Sellmann, D., Kleffmann, U.K., Zapf, L., Huttner, G., Zsolnai, L., (1984) J. Organomet. Chem., 263, p. 321Hamilton, W.C., Bernal, I., (1967) Inorg. Chem., 6, p. 2003Nazeeruddin, K., Zakeemndin, S.M., Humphry-Baker, R., Gorelsky, S.I., Lever, A.B.P., GrĂ€tzel, M., (2000) Coord. Chem. Rev., 208, p. 21

    Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations

    Full text link
    The `local scaling' hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of stable boundary layers in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of on-going debate. In this work, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. Wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct
    • 

    corecore