62 research outputs found

    Kynurenine aminotransferase 3/glutamine transaminase L/cysteine conjugate beta-lyase 2 is a major glutamine transaminase in the mouse kidney

    Get PDF
    AbstractBackgroundKynurenine aminotransferase 3 (KAT3) catalyzes the transamination of Kynurenine to kynurenic acid, and is identical to cysteine conjugate beta-lyase 2 (CCBL2) and glutamine transaminase L (GTL). GTL was previously purified from the rat liver and considered as a liver type glutamine transaminase. However, because of the substrate overlap and high sequence similarity of KAT3 and KAT1, it was difficult to assay the specific activity of each KAT and to study the enzyme localization in animals.MethodsKAT3 transcript and protein levels as well as enzyme activity in the liver and kidney were analyzed by regular reverse transcription-polymerase chain reaction (RT-PCR), real time RT-PCR, biochemical activity assays combined with a specific inhibition assay, and western blotting using a purified and a highly specific antibody, respectively.ResultsThis study concerns the comparative biochemical characterization and localization of KAT 3 in the mouse. The results showed that KAT3 was present in both liver and kidney of the mouse, but was much more abundant in the kidney than in the liver. The mouse KAT3 is more efficient in transamination of glutamine with indo-3-pyruvate or oxaloacetate as amino group acceptor than the mouse KAT1.ConclusionsMouse KAT3 is a major glutamine transaminase in the kidney although it was named a liver type transaminase.General significanceOur data highlights KAT3 as a key enzyme for studying the nephrotoxic mechanism of some xenobiotics and the formation of chemopreventive compounds in the mouse kidney. This suggests tissue localizations of KAT3/GTL/CCBL2 in other animals may be carefully checked

    Developmental expression and function of DKKL1/Dkkl1 in humans and mice

    Full text link
    Background: Experiments were designed to identify the developmental expression and function of the Dickkopf-Like1 (DKKL1/Dkkl1) gene in humans and mice. Methods: Mouse testes cDNA samples were collected at multiple postnatal times (days 4, 9, 18, 35, and 54, as well as at 6 months) and hybridized to Affymetrix mouse whole genome Genechips. To further characterize the homologous gene DKKL1 in human beings, the expression profiles between human adult testis and foetal testis were compared using Affymetrix human Genechips. The characteristics of DKKL1/Dkkl1 were analysed using various cellular and molecular biotechnologies. Results: The expression of Dkkl1 was not detected in mouse testes on days 4 or 9, but was present on days 18, 35, and 54, as well as at 6 months, which was confirmed by RT-PCR and Western blot results. Examination of the tissue distribution of Dkkl1 demonstrated that while Dkkl1 mRNA was abundantly expressed in testes, little to no expression of Dkkl1 was observed in the epididymis or other tissues. In an in vitro fertilization assay, a Dkkl1 antibody was found to significantly reduce fertilization. Human Genechips results showed that the hybridization signal intensity of DKKL1 was 405.56-fold higher in adult testis than in foetal testis. RT-PCR analysis of multiple human tissues indicated that DKKL1 mRNA was exclusively expressed in the testis. Western blot analysis also demonstrated that DKKL1 was mainly expressed in human testis with a molecular weight of approximately 34 kDa. Additionally, immunohistochemical staining showed that the DKKL1 protein was predominantly located in spermatocytes and round spermatids in human testes. An examination of the expression levels of DKKL1 in infertile male patients revealed that while no DKKL1 appeared in the testes of patients with Sertoli cell only syndrome (SCOS) or cryptorchidism, DKKL1 was observed with variable expression in patients with spermatogenic arrest. Conclusions: These results, together with previous studies, suggest that DKKL1/Dkkl1 may play an important role in testicular development and spermatogenesis and may be an important factor in male infertility.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000308911000001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Endocrinology & MetabolismReproductive BiologySCI(E)3ARTICLEnull1

    Isosteviol Has Beneficial Effects on Palmitate-Induced Ξ±-Cell Dysfunction and Gene Expression

    Get PDF
    BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV), is able to counteract palmitate-induced Ξ±-cell dysfunction and to influence Ξ±-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal Ξ±-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG) content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing Ξ±-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01) increase in glucagon secretion. Concomitantly, the TG content of Ξ±-cells increased by 78% (p<0.01) and cell proliferation decreased by 19% (p<0.05). At 18 mM glucose, ISV (10(-8) and 10(-6) M) reduced palmitate-stimulated glucagon release by 27% (p<0.05) and 27% (p<0.05), respectively. ISV (10(-6) M) also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6) M) reduced Ξ±-TC1-6 cell proliferation rate by 25% (p<0.05), but ISV (10(-8) and 10(-6) M) had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM) increased Pcsk2 (p<0.001), Irs2 (p<0.001), Fasn (p<0.001), Srebf2 (p<0.001), Acaca (p<0.01), Pax6 (p<0.05) and Gcg mRNA expression (p<0.05). ISV significantly (p<0.05) up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts Ξ±-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a new anti-diabetic drug for the treatment of type 2 diabetes

    Comparative Assessment of Microplastics in Surface Water and Sediments of Meishe River, Haikou, China

    No full text
    Meishe River is the longest urban river in Haikou. The level of microplastics pollution in this river may affect the ecological balance, and can have an adverse effect on human health. Thus, it is essential to gain a comprehensive understanding of the microplastics pollution in the river to ensure safety of the human living environment. Microscopic examination and Micro-Fourier Transform Infrared Spectroscopy (ΞΌ-FTIR) were used to investigate the distribution and characteristics of microplastic pollution in surface water and sediments of the Meishe River. The results revealed that microplastics extracted from Meishe River mainly consisted of polyethylene (PE) and poly octadecyl acrylate (POA), and the abundance of microplastics in the surface water and sediments lay in the range of 3–10 items/L and 61–205 items/100 g dry weight, respectively. With respect to shapes and colors of microplastics, among the micro plastics found in the surface water, 74% were fiber and 57% were white colored, while among those in the sediments, 88% were fiber and 55% were of white colored. In terms of particle size, microplastics with the particle size of 0.1–0.5 mm were the most abundant (49% approximately) in surface water, while the microplastics with particle size 1.0–5.0 mm were dominant (74%) in the sediments. The results clearly showed that the Meishe River was polluted by microplastics, which may eventually flow into the nearby sea and adversely affect the sea environment. Consequently, some organisms in the urban river may be adversely affected

    Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a) pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics

    No full text
    Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10 mu g/L), BaP (10 mu g/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens

    Comparative Assessment of Microplastics in Surface Water and Sediments of Meishe River, Haikou, China

    No full text
    Meishe River is the longest urban river in Haikou. The level of microplastics pollution in this river may affect the ecological balance, and can have an adverse effect on human health. Thus, it is essential to gain a comprehensive understanding of the microplastics pollution in the river to ensure safety of the human living environment. Microscopic examination and Micro-Fourier Transform Infrared Spectroscopy (&mu;-FTIR) were used to investigate the distribution and characteristics of microplastic pollution in surface water and sediments of the Meishe River. The results revealed that microplastics extracted from Meishe River mainly consisted of polyethylene (PE) and poly octadecyl acrylate (POA), and the abundance of microplastics in the surface water and sediments lay in the range of 3&ndash;10 items/L and 61&ndash;205 items/100 g dry weight, respectively. With respect to shapes and colors of microplastics, among the micro plastics found in the surface water, 74% were fiber and 57% were white colored, while among those in the sediments, 88% were fiber and 55% were of white colored. In terms of particle size, microplastics with the particle size of 0.1&ndash;0.5 mm were the most abundant (49% approximately) in surface water, while the microplastics with particle size 1.0&ndash;5.0 mm were dominant (74%) in the sediments. The results clearly showed that the Meishe River was polluted by microplastics, which may eventually flow into the nearby sea and adversely affect the sea environment. Consequently, some organisms in the urban river may be adversely affected

    Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages

    No full text
    The rhizosphere microflora are key determinants that contribute to plant health and productivity, which can support plant nutrition and resistance to biotic and abiotic stressors. However, limited research is conducted on the areca palm rhizosphere microbiota. To further study the effect of the areca palm’s developmental stages on the rhizosphere microbiota, the rhizosphere microbiota of areca palm (Areca catechu) grown in its main producing area were examined in Wanning, Hainan province, at different vegetation stages by an Illumina Miseq sequence analysis of the 16S ribosomal ribonucleic acid and internal transcribed spacer genes. Significant shifts of the taxonomic composition of the bacteria and fungi were observed in the four stages. Burkholderia-Caballeronia-Paraburkholderia were the most dominant group in stage T1 and T2; the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were decreased significantly from T1 to T2; and the genera Acidothermus and Bacillus were the most dominant in stage T3 and T4, respectively. Meanwhile, Neocosmospora, Saitozyma, Penicillium, and Trichoderma were the most dominant genera in the stage T1, T2, T3, and T4, respectively. Among the core microbiota, the dominant bacterial genera were Burkholderia-Caballeronia-Paraburkholderia and Bacillus, and the dominant fungal genera were Saitozyma and Trichoderma. In addition, we identified five bacterial genera and five fungal genera that reached significant levels during development. Finally, we constructed the OTU (top 30) interaction network of bacteria and fungi, revealed its interaction characteristics, and found that the bacterial OTUs exhibited more extensive interactions than the fungal OTUs. Understanding the rhizosphere soil microbial diversity characteristics of the areca palm could provide the basis for exploring microbial association and maintaining the areca palm’s health

    Changes of Ammonia-Metabolizing Enzyme Activity and Gene Expression of Two Strains in Shrimp Litopenaeus vannamei Under Ammonia Stress

    No full text
    Ammonia stress can inhibit the survival and growth, and even cause mortality of shrimp. In this study, ammonia-metabolizing enzyme activities and gene expression were compared between two strains of L. vannamei under different ammonia-N (NH4+) concentrations (3.4, 13.8, and 24.6 mg/L). The results showed that elevated ammonia concentrations mainly increased glutamine synthetase (GSase) activities while inhibiting transglutaminase (TGase) activities in the muscle of both strains. Thus, we concluded that L. vannamei could accelerate the synthesis of glutamine from glutamate and NH4+ to alleviate ammonia stress. Compared with the muscle, the hepatopancreas plays a major role in ammonia stress and might be a target tissue to respond to the ammonia stress. Compared to the control group, the treatment of high ammonia concentrations reduced the hepatopancreas TGase (TG) gene expression and increased the gene expression rates of glutamate dehydrogenase-Ξ² (GDH-Ξ²) and GSase (GS) in both the muscle and the hepatopancreas of the two strains (p &lt; 0.05). These genes (GDH-Ξ² and GS) in strain B were not only expressed earlier but also at levels higher than the expression range of strain A. At the gene level, strain B showed a more rapid and positive response than strain A. These data might help reveal the physiological responses mechanisms of shrimp adapt to ammonia stress and speed up the selective breeding process in L. vannamei

    Comparative Studies on the Toxicokinetics of Benzo[a]pyrene in Pinctada martensii and Perna viridis

    No full text
    Research on the kinetics of Benzo[a]pyrene (B[a]P) bioaccumulation in the clam Pinctada martensii and mussel Perna viridis showed that the initial rate of uptake was directly related to the PAH concentrations in the ambient environment. The uptake and depuration rate constants were different at the four B[a]P exposure levels, which indicated that the toxicokinetic rate constants mainly depended on the exposure levels of pollutants to the environment. In addition, the uptake rate constants of B[a]P were higher than the depuration rate constants in the entire experiment. The comparison demonstrated that mussels release B[a]P more rapidly than clams. The bioconcentration factors (BCFs) of B[a]P varied from 3335 to 12892 in the clam and 2373-6235 in the mussel. These findings on the bioaccumulation kinetics for petroleum hydrocarbons, in association with the critical body residue, will be valuable when choosing sensitive organisms to assess the potential ecotoxicological risk to the marine environment

    Protection effect of kallistatin on carbon tetrachloride-induced liver fibrosis in rats via antioxidative stress.

    Get PDF
    Prolonged inflammation and oxidative stress are emerging as key causes of pathological wound healing and the development of liver fibrosis. We have investigated the effects of recombinant human kallistatin, produced in Pichia. pastoris, on preventing carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Daily administration of kallistatin prevented development of CCl4-induced liver fibrosis, which was evidenced by histological study. In all kallistatin treated rats, activation of hepatic stellate cells (HSC) as assessed by s-smooth muscle actin staining was attenuated, TGF- Ξ²1 expression was inhibited, class I serum biomarkers associated with the process of fibrogenesis, such as hyaluronic acid, laminin, and procollagen III, were lowered, compared with that in the model control group. Furthermore, residual hepatic functional reserve was improved by kallistatin treatment. CCl4 induced elevation of malondialdehyde level and reduced superoxide dismutase activity in the liver, while kallistatin reduced these oxidative parameters. We also investigated the effects of kallistatin on rat primary HSC and LX-2, the human HSC cell line. Kallistatin scavenged H2O2-induced ROS in the LX-2 cells, and suppressed the activation of primary HSC. These results suggest recombinant human kallistatin might be a promising drug candidate for therapeutic intervention of liver fibrosis
    • …
    corecore