42 research outputs found

    Genetics and phylogeny of genus Coilia in China based on AFLP markers

    Get PDF
    The taxonomy of Coilia has been extensively studied in China, and yet phylogenetic relationships among component taxa remain controversial. We used a PCR-based fingerprinting technique, amplified fragment length polymorphism (AFLP) to characterize and identify all four species of Coilia in China. We examined the genetic relationships of the four species of Coilia and a subspecies of Coilia nasus with AFLP. A total of 180 AFLP loci were generated from six primer combinations, of which 76.11% were polymorphic. The mean genetic distance between pairs of taxa ranged from 0.047 to 0.596. The neighbor-joining tree and UPGMA dendrogram resolved the investigated species into three separate lineages: (1) C. mystus, (2) C. grayii and (3) C. brachygnathus, C. nasus, and C. nasus taihuensis. Phylogenetic analysis of the AFLP data is inconsistent with current morphological taxonomic systems. The AFLP data indicated a close relationship among C. brachygnathus, C. nasus taihuensis, and C. nasus. Therefore, the two species described under Coilia (C. brachygnathus and C. nasus taihuensis) are treated as synonyms of C. nasus

    Analysis on anti-wear mechanism of bionic non-smooth surface based on discrete phase model

    No full text
    In order to study the lubrication and anti-wear mechanism of the pit-type bionic non-smooth surface used in the low-speed and high-torque seawater hydraulic motor valve plate pair, the discrete phase models of the four pits are simulated under different working conditions. In this study, the trajectories of different diameters particles in the hemispherical pits are analysed, which can reflect the movement of different sizes and masses wear debris in the pits. The discrete phase concentration distributions of the four-kind pits, hemispherical pits, cylindrical pits, four-prism pits and tri-prism pits, are simulation under the same working conditions, which reflects the effect of pit geometry on the movement of wear debris. The discrete phase concentration distributions of four pits moving at different rotation speeds and different rotation radii are calculated, which indicates that the rotation speed of the motor and the distribution of pits on the valve plate will affect the ability of the pit to store wear debris

    Experimental Study on the Distribution Trends of Fouling on a Compressor Blade

    No full text
    The formation of a scale on a compressor blade surface is inevitable, and the study of the distribution of the scale can provide effective guidance for the cleaning of a wing engine. Using the waste liquid collected from the engine during the wing water washing process as a data sample, the main components of compressor blade surface fouling were analysed, which included 49.9% SiO2, 14.5% FeO, 11.5% Al2O3, 9.4% CaO, etc. Based on JKR contact theory, a model for calculating the total thickness of the fouling layer on the blade surface was established. Through a simulation experiment on the fouling of a blade surface, the number of particulates deposited on the pressure surface was lower than the amount of the secondary deposition mass on the suction surface. From contrastive analysis of the results of perforation, the fouling is divided into three types: loose, dense, and transitional. The surface of a single blade can be divided into four different fouling areas. The parameters of the engine cleaning process can be designed according to the characteristics of the fourth area

    Distribution performance analysis and experimental research on the port plate pairs of low speed high torque seawater hydraulic motor

    No full text
    The current research of seawater hydraulic motor mainly focused on piston motor and vane motor, but seldom regarded low speed high torque seawater hydraulic motor. Low speed high torque seawater hydraulic motor as a kind of energy conversion device and actuator plays an important role in seawater hydraulic transmission system. However, the physical and chemical properties of seawater, such as low viscosity, high causticity and poor lubrication, result in numerous problems. In this paper, the flow distribution characteristics of port plate pairs for the seawater hydraulic motor are investigated, and the leakage flow and power loss models of port plate pairs are established. Numerical simulations are carried out to examine the effects of water film, inlet pressure and rotating speed on the pressure distribution and leakage flow. And the friction and wear tests of port plate pairs are also carried out. Moreover, the test system of the seawater hydraulic motor is constructed and the performance of prototype with no-load or loading is conducted. The results indicate that the clearance of port plate pairs and inlet pressure have a significant effect on distribution characteristics, but the effect of rotating speed is not very obvious. The experimental results show that the minimum error rate can be maintained within 0.3% by the proposed flow model and the counter materials of 316L against carbon-fiber-reinforced polyetheretherketone (CFRPEEK) are suitable for the port plate pairs of seawater hydraulic motor. Finally, based on the seawater hydraulic experiment platform, the volumetric efficiency of no-load and loading are obtained that the maximum can achieve 94.71% and 90.14%, respectively. This research work may improve the flow distribution performance, lubrication and the friction and wear properties, enhance energy converting efficiency of port plate pair and provide theoretical and technical support for the design of high-performance water hydraulic components

    Effect of Micro-Textured Surfaces and Sliding Speed on the Lubrication Mechanism and Friction-Wear Characteristics of CF/PEEK Rubbing against 316L Stainless Steel under Seawater Lubrication

    No full text
    In this work, the lubrication mechanism and friction-wear characteristics of the friction pair between carbon-fiber-reinforced polyether ether ketone (CF/PPEK) and 316L stainless steel with a micro-hemispherical pit textured surface at different sliding speeds under seawater lubrication were studied through numerical simulation and experimental investigation. The study results indicate that the seawater moves following the sliding direction of the upper specimen, forms a vortex ring flow in the hemispherical pit of the bottom specimen, uses the convergent gap to generate a hydrodynamic effect, produces the bearing capacity, and realizes fluid lubrication. The hemispherical pit diminishes the abrasive wear during the friction process by storing the wear debris, and the main wear forms of the hemispherical-pit surface friction pair are oxidative wear and adhesive wear. The friction coefficient of the hemispherical-pit surface friction pair is 0.018–0.027, the specimen contact temperature is 40.2–55.1 °C, and it is always in the hydrodynamic lubrication state in a rotation speed ranging from 1000 r/min to 1750 r/min. As the sliding speed increases, the specimen contact temperature climbs, and the oxidation reaction gradually becomes full. Oxidative wear and adhesive wear alternately play a dominant role in the friction, and the wear rate first decreases and then increases sharply

    Design and Optimization of High-Pressure Water Jet for Coal Breaking and Punching Nozzle Considering Structural Parameter Interaction

    No full text
    The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%

    Design and Optimization of High-Pressure Water Jet for Coal Breaking and Punching Nozzle Considering Structural Parameter Interaction

    No full text
    The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%

    Effect of Special-Shaped Nozzle Structure on Water Jet Performance

    No full text
    The impact force and effective impact area of are water jet are two important indexes for evaluating jet performance, and the outlet shape of the nozzle has a great influence on jet performance. In this study, five nozzles with different outlet shapes were designed, and water jet test experiments were conducted at different inlet pressures using an independently built water jet impact test platform, and the influence law of nozzle shape on the center impact pressure and flow coefficient of the water jet was investigated. The influence of nozzle shape on the effective impact area and entrainment rate of water jet was further investigated by numerical simulation. The results showed that the center impact pressure of the circular nozzle was the greatest when the inlet pressure and the target distance were small. The center impact pressure, the flow coefficient, and the effective area of the triangular nozzle with sharp edges were better than the traditional circular nozzle when the inlet pressure and the target distance were increased. Although the center impact pressure of the square nozzle is lower than that of the circular nozzle, its flow coefficient and effective impact area are higher than those of the circular nozzle with increasing target distance. The water jets of the elliptical and cross nozzles were the most divergent, and the jet performance was poor

    Degradation State Recognition of Piston Pump Based on ICEEMDAN and XGBoost

    No full text
    Under different degradation conditions, the complexity of natural oscillation of the piston pump will change. Given the difference of the characteristic values of the vibration signal under different degradation states, this paper presents a degradation state recognition method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and eXtreme gradient boosting (XGBoost) to improve the accuracy of state recognition. Firstly, ICEEMDAN is proposed to alleviate the mode mixing phenomenon, which decomposes the vibration signal and obtain the intrinsic mode functions (IMFs) with less noise and more physical meaning, and subsequently the optimal IMF is found by using the correlation coefficient method. Then, the time domain, frequency domain, and entropy of the effective IMF are calculated, and the new characteristic values which can represent the degradation state are selected by principal component analysis (PCA) that it realizes dimension reduction. Finally, the above-mentioned characteristic indexes are used as the input of the XGBoost algorithm to achieve the recognition of the degradation state. In this paper, the vibration signals of four different degradation states are generated and analyzed through the piston pump slipper degradation experiment. By comparing the proposed method with different state recognition algorithms, it can be seen that the method based on ICEEMDAN and XGBoost is accurate and efficient, the average accuracy rate can reach more than 99%. Therefore, this method can more accurately describe the degradation state of the piston pump and has a highly practical application value
    corecore