95 research outputs found

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience

    AAPM/RSNA Physics Tutorial for Residents: Topics in CT

    No full text

    Perceptions of highly identified fans regarding rival teams in US intercollegiate football and men\u27s basketball

    No full text
    Havard et al. (2013) developed and validated the sport rivalry fan perception scale (SRFPS) as a way to measure fan perceptions of four aspects regarding a rival team (indirect competition, academic prestige, sportsmanship, sense of satisfaction through direct competition). The current study investigated differences in SRFPS subscale mean scores of highly-identified intercollegiate football and men\u27s basketball fans in the USA regarding type of favourite team, proximity to favourite team, season ticket holder status of favourite team, and the outcome of the most recent rivalry contest. A series of MANCOVAs indicated that favourite team (football or basketball), season ticket holder status, and outcome of the most recent rivalry contest contributed to significant differences in rival perceptions after controlling for team identification. Discussion focuses on implications of these findings for academics and practitioners, as well as areas for future research. Copyright © 2013 Inderscience Enterprises Ltd

    Optimal acquisition parameter selection for CT simulators in radiation oncology

    No full text
    The purpose of this study was to identify optimal CT acquisition parameter settings for each make and model of scanners used in a large Radiation Oncology (RO) Department, considering the special requirements of CT simulation. Two CT phantoms were used to evaluate the image quality of the five different multichannel CT scanners using helical scan mode. We compared the effects of various pitch, detector configurations, and rotation time parameters on image artifacts, and on spatial and contrast resolution. We found that helical artifact was closely related to pitch and detector configuration settings. This artifact was scannerspecific and generally more obvious when the channel width or detector collimation was equal to the image thickness. Different acquisition parameter settings produced slight differences in observed high- and low-contrast resolution. Short rotation time degraded image quality for certain scanners, but only slightly, while other rotation times, such as 0.75 sec/rotation and above, had no obvious effect on resolution. An optimized combination of acquisition parameters was determined for each scanner make and model, based on phantom image quality and other considerations for clinical applications. This information may be directly useful for physicists whose CT simulation scanners match one of the five examined in this study. If not, the strategy reported here may be used as a guide to perform a similar evaluation of the scanner

    Quantitative assessment of four-dimensional computed tomography image acquisition quality

    No full text
    The purpose of the present work was to describe the development and validation of a series of tests to assess the quality of four-dimensional (4D) computedtomography (CT) imaging as it is applied to radiation treatment planning. Using a commercial respiratory motion phantom and a programmable moving platform with a CT phantom, we acquired 4D CT datasets on two commercial multislice helical CT scanners that use different approaches to 4D CT image reconstruction. Datasets were obtained as the platform moved in various patterns designed to simulate breathing. Known inserts in the phantom were contoured, and statistics were generated to evaluate properties important to radiation therapy—namely, accuracy of phase-binning, shape, volume, and CT number. Phase-binning accuracy varied by as much as 5 % for a 4D procedure in which images were reconstructed and then binned, but exhibited no variation for a 4D procedure in which projections were binned before reconstruction. The magnitude of geometric distortion was found to be small for both approaches, as was the magnitude of volume error. Partial-volume effects in the direction perpendicular to the transverse planes of reconstruction affected volume accuracy, however. Computed tomography numbers were reproduced accurately, but 4D images exhibited more variation in CT number than static CT images did. Characterization of such properties can be used to better understand and optimize the various parameters that affect 4D CT image quality. PACS numbers: 87.53.-j, 87.59.F
    • …
    corecore