19 research outputs found

    PillarNeSt: Embracing Backbone Scaling and Pretraining for Pillar-based 3D Object Detection

    Full text link
    This paper shows the effectiveness of 2D backbone scaling and pretraining for pillar-based 3D object detectors. Pillar-based methods mainly employ randomly initialized 2D convolution neural network (ConvNet) for feature extraction and fail to enjoy the benefits from the backbone scaling and pretraining in the image domain. To show the scaling-up capacity in point clouds, we introduce the dense ConvNet pretrained on large-scale image datasets (e.g., ImageNet) as the 2D backbone of pillar-based detectors. The ConvNets are adaptively designed based on the model size according to the specific features of point clouds, such as sparsity and irregularity. Equipped with the pretrained ConvNets, our proposed pillar-based detector, termed PillarNeSt, outperforms the existing 3D object detectors by a large margin on the nuScenes and Argoversev2 datasets. Our code shall be released upon acceptance

    Experimental investigation on fracture behavior of lignite and its fracturing significance:taking Shengli Coalfield as an example

    Get PDF
    The anisotropy of fracture properties at different bedding orientations of lignite plays an important role in controlling the formation of fracture network of reservoir racturing. The static fracture behavior of the lignite semi-circular bending specimens of the 6 coal group in the Shengli coalfield, Inner Mongolia, is studied. The results show that: ① Bedding When the angle θ is 90°, 60°, 45°, 30° and divider, the mode I fracture toughness KIC of lignite of Shengli coalfield is 0.045, 0.058, 0.073, 0.084 and 0.096 MPa·m0.5, respectively. on the whole, the fracture toughness of the sample with the notch-cut layered surface is much higher than that of the notch-parallel bedding-surface sample, and for the notch-parallel bedding-surface sample, the There is an increasing trend with decreasing fracture toughness, and the fracture properties of lignite in the study area have strong anisotropic characteristics; ② The displacement-load curves shows that the fracture process of the five lignite semi-circular bending samples under three-point bending loading includes: the compaction stage of pores and cracks, the linear elastic compression deformation energy storage stage, the critical fracture failure stage, and the load unloading stage after fracture. The large stage, and the rapid load unloading of the above samples in the later stage of fracture indicates that the material fracture forms are brittle fractures, the coal has a large fracture rate, and the reservoir is suitable for large-scale volume fracturing; ③ The fracture energy Γ of five kinds of lignite semi-circular bending samples with the bedding angle θ is 90°, 60°, 45°, 30° and dividing during three-point bending loading process is 64.38, 80.49, 112.50, 146.66, and 355.00 J/m2, respectively. The fracture energy of the sample with the notch-cut layered surface in the whole process is much larger than that of the lignite sample of the incision-parallel bedding plane. Under the same conditions, the energy consumption of fracturing along the bedding direction of the split lignite is high, and the expansion scale of the fracturing fracture is limited; ④ Under three-point bending loading, the fractures of the lignite semi-circular bending specimens in the study area mainly include tensile fractures and shear fractures. The fracture path of the lignite specimens is controlled by the spatial relations between the external loading direction and the orientation of the coal bedding plane When the bedding angle θ is between 45° and 60°, the degree of tortuosity of the fracture of the sample is the highest, and the fracture network is most likely to be formed in the coal reservoir fracturing; ⑤ Based on the fracture mechanics anisotropy of lignite, this paper believes that horizontal wells + staged fracturing in lignite reservoirs can greatly improve the complexity of fracturing fractures. In addition, considering the inertia of particles, the horizontal wells with the borehole direction parallel to the maximum horizontal principal stress can carry proppant smoothly and avoid plugging, and the fracture filling effect is better. The above understanding is expected to provide a certain scientific reference for the reservoir volume fracturing stimulation and fracturing network construction in the study area

    Resonant actuation based on dynamic characteristics of bistable laminates

    Get PDF
    Bistable or multi-stable structures have found broad applications in the fields of adaptive structures, flow control, and energy harvesting devices due to their unique nonlinear characteristics and strong local stability behavior. In this paper, a theoretical model based on the principle of minimum potential energy and the Rayleigh–Ritz method is established to study the dynamic characteristics of a bistable unsymmetric laminate with a fixed center. Numerical results of this theoretical model were obtained and verified by an FEA model using ABAQUS. The nonlinear dynamic characteristics and the structural response under different levels of external excitation were investigated and verified by experiments. The realization conditions of single-well vibration and cross-well vibration of bistable laminates were determined, with which the actuation strategies can be optimized for targeting modal frequencies of bistable laminates

    A common Shox2–Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node

    Get PDF
    In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously that Nkx2-5, which is expressed in the PV myocardium and reinforces a chamber-like myocardial identity in the PV, is lacking in the SAN. Here we present evidence that in mice Shox2 antagonizes the transcriptional output of Nkx2-5 in the PV myocardium and in a functional Nkx2-5(+) domain within the SAN to determine cell fate. Shox2 deletion in the Nkx2-5(+) domain of the SAN caused sick sinus syndrome, associated with the loss of the pacemaker program. Explanted Shox2(+) cells from the embryonic PV myocardium exhibited pacemaker characteristics including node-like electrophysiological properties and the capability to pace surrounding Shox2(−) cells. Shox2 deletion led to Hcn4 ablation in the developing PV myocardium. Nkx2-5 hypomorphism rescued the requirement for Shox2 for the expression of genes essential for SAN development in Shox2 mutants. Similarly, the pacemaker-like phenotype induced in the PV myocardium in Nkx2-5 hypomorphs reverted back to a working myocardial phenotype when Shox2 was simultaneously deleted. A similar mechanism is also adopted in differentiated embryoid bodies. We found that Shox2 interacts with Nkx2-5 directly, and discovered a substantial genome-wide co-occupancy of Shox2, Nkx2-5 and Tbx5, further supporting a pivotal role for Shox2 in the core myogenic program orchestrating venous pole and pacemaker development

    Segmentation Can Aid Detection: Segmentation-Guided Single Stage Detection for 3D Point Cloud

    No full text
    Detecting accurate 3D bounding boxes from point cloud data plays an essential role in autonomous driving. However, improving performance requires more complex models, which come with high memory and computational cost. In this work, we design a Segmentation-Guided Auxiliary Network (SGAN) to improve the localization quality of detection. The points from different levels are concatenated to generate the multi-scale feature for the points used for prediction, i.e., candidate points. SGAN is jointly optimized by two tasks of candidate points—segmentation and center estimation—and it is only used in training and therefore introduces no extra computation in the inference stage. Furthermore, we consider that point-based detectors suffer from the outline points of sampling, so we explore the correlation between the data and propose the Point Cloud External Attention (PCEA) to extract the semantic features with a low memory cost. Our method SGSSD achieves a large margin against the baseline on the KITTI and Waymo datasets, and it runs at 25 FPS for inference on the KITTI test set with a single NVIDIA RTX 3090

    Effect of Al<sub>2</sub>O<sub>3</sub> on Crystallization, Microstructure, and Properties of Glass Ceramics Based on Lead Fuming Furnace-Slag

    No full text
    In the paper, glass ceramics used as architectural materials were prepared based on lead fuming furnace-slag (LFFS) by a synergistic sinter-crystallization method. The effects of Al2O3 addition on the crystallization phase, crystallization kinetics, and mechanical performance of glass ceramics were investigated. The results showed that the phases of the glass ceramics prepared were composed of gehlenite and wollastonite, and crystallization kinetics analysis showed that bulk crystallization dominated the overall crystallization process in the Al2O3 content range from 2% to 8%. The glass transition temperature and the crystallization peak temperature of the glass ceramics generally increased with the increase in the Al2O3 content. Additionally, the crystalline morphology gradually developed from sheet-like to spherical, while the number of pores increased and the bulk density gradually decreased. When the Al2O3 content was 2%, the bending strength of glass ceramics reached its maximum, 75.1 MPa, corresponding to a bulk density of 2.24 g·cm−3. Owing to the high strength and relatively low bulk density, the sintered glass ceramics appear promising for potential applications in lightweight construction tiles

    Rapid Improvement in Visual Selective Attention Related to Action Video Gaming Experience

    No full text
    A central issue in cognitive science is understanding how learning induces cognitive and neural plasticity, which helps illuminate the biological basis of learning. Research in the past few decades showed that action video gaming (AVG) offered new, important perspectives on learning-related cognitive and neural plasticity. However, it is still unclear whether cognitive and neural plasticity is observable after a brief AVG session. Using behavioral and electrophysiological measures, this study examined the plasticity of visual selective attention (VSA) associated with a 1 h AVG session. Both AVG experts and non-experts participated in this study. Their VSA was assessed prior to and after the AVG session. Within-group comparisons on the participants' performance before and after the AVG session showed improvements in response time in both groups and modulations of electrophysiological measures in the non-experts. Furthermore, between-group comparisons showed that the experts had superior VSA, relative to the non-experts, prior to the AVG session. These findings suggested an association between the plasticity of VSA and AVG. Most importantly, this study showed that the plasticity of VSA was observable after even a 1 h AVG session

    Action Video Game Experience Related to Altered Large-Scale White Matter Networks

    No full text
    With action video games (AVGs) becoming increasingly popular worldwide, the cognitive benefits of AVG experience have attracted continuous research attention over the past two decades. Research has repeatedly shown that AVG experience can causally enhance cognitive ability and is related to neural plasticity in gray matter and functional networks in the brain. However, the relation between AVG experience and the plasticity of white matter (WM) network still remains unclear. WM network modulates the distribution of action potentials, coordinating the communication between brain regions and acting as the framework of neural networks. And various types of cognitive deficits are usually accompanied by impairments of WM networks. Thus, understanding this relation is essential in assessing the influence of AVG experience on neural plasticity and using AVG experience as an interventional tool for impairments of WM networks. Using graph theory, this study analyzed WM networks in AVG experts and amateurs. Results showed that AVG experience is related to altered WM networks in prefrontal networks, limbic system, and sensorimotor networks, which are related to cognitive control and sensorimotor functions. These results shed new light on the influence of AVG experience on the plasticity of WM networks and suggested the clinical applicability of AVG experience

    Cortical Dynamic Causality Network for Auditory-Motor Tasks

    No full text
    corecore