12 research outputs found

    Utilitatea cercetarilor de marketing in politica de produs

    Get PDF
    La nivelul politicii de produs, cercetarile de marketing isi gasesc aplicabilitatea in studii privind lansarea pe piata a unui produs nou, evaluarea satisfactiei consumatorilor, studierea imaginii produsului in randul consumatorilor s.a. Lansarea pe piata a unui produs nou face apel la cercetarile de marketing pe tot parcursul acestui proces. Astfel, in cadrul etapei de generare a ideilor de produs nou sunt utilizate o serie de metode de cercetare calitativa precum: brainstorming, analiza morfologica, listarea atributelor, sinectica, matricea descoperirilor. Testarea de concept se face folosind cercetari calitative de tip focus-group sau interviu in profunzime sau cantitative de tip ancheta. La nivelul testarii de acceptabilitate metodele de cercetare sunt folosite in mai multe directii: testarea prototipului, testarea numelui, testarea ambalajului. Evaluarea satisfactiei consumatorilor urmare a consumului/utilizarii noului produs este de asemenea un domeniu in care se utilizeaza cat mai intens cercetarile de marketing, fiind dezvoltate in acest sens instrumente specifice.test de concept, test de acceptabilitate, testare oarba, test de regasire, satisfactie

    Framing Influence on Fairness Perceptions of Differential Prices

    Get PDF
    The objective of the research presented in this paper is to examine the effect of two types of framing (attribute and goal) on distributive and procedural price fairness perceptions and on some other variables of consumer behavior. For this purpose, two 2x2 marketing experiments were conducted. The first study evaluated the influence of price framing and seller’s motive on price fairness, price policy fairness, and value perceptions, as well as shopping intentions. The second study assessed the influence of price framing and seller’s motive framing on the same variables as in the first study. An important finding of this paper was that price framing has a direct influence on price fairness perceptions and seller’s motive has a direct influence on policy fairness perceptions. The implications of these results for the firms concern the communication of their pricing messages.distributive fairness, procedural fairness, attribute framing, goal framing, dual entitlement

    Qualitative versus quantitative marketing research

    Get PDF
    Marketing research approach might be accomplished in different ways. In the practical view, we can say that treating it as quantitative and qualitative is more pragmatic and operational.qualitative research, quantitative research, qualitative techniques, sample, sampling, weighting factors.

    Effect of Doping Element and Electrolyte’s pH on the Properties of Hydroxyapatite Coatings Obtained by Pulsed Galvanostatic Technique

    No full text
    Hydroxyapatite (HAp) is the most widely used calcium phosphate as a coating on metal implants due to its biocompatibility and bioactivity. The aim of this research is to evaluate the effect of the pH’s electrolyte and doping element on the morphology, roughness, chemical, and phasic composition of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition. As doping elements, both Sr and Ag were selected due to their good osseoinductive character and antibacterial effect, respectively. The electrolytes were prepared at pH 4 and 5, in which specific concentrations of Sr, Ag, and Sr + Ag were added. In terms of morphology, all coatings consist in ribbon-like crystals, which at pH 5 appear to be a little larger. Addition of Sr did not affect the morphology of HAp, while Ag addition has led to the formation of flower-like crystals agglomeration. When both doping elements were added, the flowers like agglomerations caused by the Ag have diminished, indicating the competition between Sr and Ag. X-Ray Diffraction analysis has highlighted that Sr and/or Ag have successfully substituted the Ca in the HAp structure. Moreover, at higher pH, the crystallinity of all HAp coatings was enhanced. Thus, it can be said that the electrolyte’s pH enhances to some extent the properties of HAp-based coatings, while the addition of Sr and/or Ag does not negatively impact the obtained features of HAp, indicating that by using pulsed galvanostatic electrochemical deposition, materials with tunable features dictated by the function of the coated medical device can be designed

    Experimental Study Regarding the Behavior at Different pH of Two Types of Co-Cr Alloys Used for Prosthetic Restorations

    No full text
    Cobalt-chromium (Co-Cr) alloys are widely utilized in dentistry. The salivary pH is a significant factor, which affects the characteristics and the behavior of dental alloys through corrosion. This study aimed to evaluate the corrosion behavior in artificial saliva with different pH values (3, 5.7, and 7.6) of two commercial Co-Cr dental alloys manufactured by casting and by milling. Corrosion resistance was determined by the polarization resistance technique, and the tests were carried out at 37 ¹ 1 °C, in Carter Brugirard artificial saliva. After the electrochemical parameters, it can be stated that the cast Co-Cr alloy has the lowest corrosion current density, the highest polarization resistance, and the lowest speed of corrosion in artificial saliva with pH = 7.6. In the case of milled Co-Cr alloy, the same behavior was observed, but in artificial saliva with pH = 5.7, it recorded the most electropositive values of open circuit potential and corrosion potential. Although both cast and milled Co-Cr alloys presented a poorer corrosion resistance in artificial saliva with a more acidic pH value, the milled Co-Cr alloy had better corrosion behavior, making this alloy a better option for the prosthetic treatment of patients suffering from GERD

    Magnesium Doped Hydroxyapatite-Based Coatings Obtained by Pulsed Galvanostatic Electrochemical Deposition with Adjustable Electrochemical Behavior

    No full text
    The aim of this study was to adapt the electrochemical behavior in synthetic body fluid (SBF) of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition through addition of Mg in different concentrations. The coatings were obtained by electrochemical deposition in a typical three electrodes electrochemical cell in galvanic pulsed mode. The electrolyte was obtained by subsequently dissolving Ca(NO3)2·4H2O, NH4H2PO4, and Mg(NO3)2·6H2O in ultra-pure water and the pH value was set to 5. The morphology consists of elongated and thin ribbon-like crystals for hydroxyapatite (HAp), which after the addition of Mg became a little wider. The elemental and phase composition evidenced that HAp was successfully doped with Mg through pulsed galvanostatic electrochemical deposition. The characteristics and properties of hydroxyapatite obtained electrochemically can be controlled by adding Mg in different concentrations, thus being able to obtain materials with different properties and characteristics. In addition, the addition of Mg can lead to the control of hydroxyapatite bioactive ceramics in terms of dissolution rate

    Evaluation of the Behavior of Two CAD/CAM Fiber-Reinforced Composite Dental Materials by Immersion Tests

    No full text
    Fiber-reinforced composites are used as restorative materials for prosthetic oral rehabilitation. Gastroesophageal reflux disease (GERD) is an accustomed affection with various oral manifestations. This study aimed to evaluate the behavior of two high-performance CAD/CAM milled reinforced composites (Trinia™, TriLor) in artificial saliva at different pH levels through immersion tests, and to determine if changes in mass or surface morphology at variable pH, specific for patients affected by GERD, appear. After investigating the elemental composition and surface morphology, the specimens were immersed in Carter Brugirard artificial saliva for 21 days at different pH values (5.7, 7.6, and varying the pH from 5.7 to 3). The values of the weighed masses during the immersion tests were statistically processed in terms of mean and standard deviation. Results suggested that irrespective of the medium pH, the two composites presented a similar mass variation in the range of −0.18 (±0.01)–1.82 (±0.02) mg after immersion, suggesting their stability when in contact with artificial saliva, an aspect which was also highlighted by scanning electron microscope (SEM) analysis performed on the immersed surfaces. Novel composite biomaterials can be a proper alternative for metal alloys used for prosthetic frameworks in patients suffering from GERD

    Influence of the electrochemical treatment on the magnetic properties of nanowires

    No full text
    Abstract: Synthesis of nanomaterials is one of the most researched areas. Nanomaterials are at the core of all modern nano-devices. The reduced size helps electronics to have increased performance, low energy consumption and low heat output. Properties of nanomaterials are mainly related to the involved large surface to volume ratio. Nanomaterials can be fabricated using different methods. One of the intensely used, inexpensive and with high degree of reproducibility is electrochemistry (EC), which can be used either to destroy (corrosion) or to create (thin films, nanoparticles, nanowires (NWs), etc.) materials. In this paper we focus on the effect of the electrochemical treatment (EchT) on the structural and magnetic properties of nanowires. Ni NWs were synthesized and analyzed by SQUID to study the magnetic properties induced by the EchT of the Au substrate. Ni NWs were synthesized in a gold-coated PCTE membrane using template synthesis. The EchT induced structural modifications of the Au substrate and further modifications of NWs magnetism. AFM image of the Au plated PCTE template SEM image of Ni Nanowire

    Structural, mechanical, wear and anticorrosive properties of CrSiCN coatings used for industrial woodworking applications

    No full text
    The woodworking applications are a fast-growing field that aims to create advanced coatings with superior wear resistance, reduced friction, and robust corrosion protection. Chromium silicon carbonitride (CrSiCN) coatings have emerged as a promising solution that offers a unique combination of properties ideal for various industrial applications. The C/N ratio significantly influences the coatings' mechanical and tribological properties. By optimizing the C/N ratio, this research aims to reveal new insights for CrSiCN coatings, enhancing their application in environments that require durability, efficiency, and longevity. In this paper, the effect of the C/N ratio on the structural, mechanical, and corrosion resistance of CrSiCN coatings deposited by cathodic arc evaporation on different steel substrates was studied. The main purpose was to enhance the mechanical and anticorrosion properties of the CrSiCN coatings and to select the optimum parameters for the deposition of layers with superior properties. The results showed that the final properties can be tailored by choosing specific deposition conditions. In this case, the C/N ratio proved to be critical since coatings with higher carbon content presented enhanced corrosion resistance, being able to withstand operating conditions similar to real-life

    Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite

    No full text
    The current research aim is to biofunctionalize pure titanium (Ti, grade IV) substrate with titania nanotubes and Zn doped hydroxyapatite-based coatings by applying a duplex electrochemical treatment, and to evaluate the influence of Zn content on the physico-chemical properties of hydroxyapatite (HAp). The obtained nanostructured surfaces were covered with HAp-based coatings doped with Zn in different concentrations by electrochemical deposition in pulsed galvanostatic mode. The obtained surfaces were characterized in terms of morphology, elemental and phasic composition, chemical bonds, roughness, and adhesion. The nanostructured surface consisted of titania nanotubes (NT), aligned, vertically oriented, and hollow, with an inner diameter of ~70 nm. X-ray Diffraction (XRD) analysis showed that the nanostructured surface consists of an anatase phase and some rutile peaks as a secondary phase. The morphology of all coatings consisted of ribbon like-crystals, and by increasing the Zn content the coating became denser due to the decrement of the crystals’ dimensions. The elemental and phase compositions evidenced that HAp was successfully doped with Zn through the pulsed galvanostatic method on the Ti nanostructured surfaces. Fourier Transform Infrared spectroscopy (FTIR) and XRD analysis confirmed the presence of HAp in all coatings, while the adhesion test showed that the addition of a high quantity leads to some delamination. Based on the obtained results, it can be said that the addition of Zn enhances the properties of HAp, and through proper experimental design, the concentration of Zn can be modulated to achieve coatings with tunable features
    corecore