6 research outputs found

    First operation of the KATRIN experiment with tritium

    Get PDF
    The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of β β -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 0.2 eV (90% 90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019

    Hypofractionated stereotactic radiotherapy of limited brain metastases: a single-centre individualized treatment approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We retrospectively report treatment results of our single-centre experience with hypofractionated stereotactic radiotherapy (hfSRT) of limited brain metastases in primary and recurrence disease situations. Our aim was to find the most effective and safe dose concept.</p> <p>Methods</p> <p>From 04/2006 to 12/2010, 75 patients, with 108 intracranial metastases, were treated with hfSRT. 52 newly diagnosed metastases (48%), without up-front whole brain radiotherapy (WBRT), received hfSRT as a primary treatment. 56 metastases (52%) received a prior WBRT and were treated in this study in a recurrence situation. Main fractionation concepts used for primary hfSRT were 6-7x5 Gy (61.5%) and 5x6 Gy (19.2%), for recurrent hfSRT 7-10x4 Gy (33.9%) and 5-6x5 Gy (33.9%).</p> <p>Results</p> <p>Median overall survival (OS) of all patients summed up to 9.1 months, actuarial 6-and 12-month-OS was 59% and 35%, respectively. Median local brain control (LC) was 11.9 months, median distant brain control (DC) 3.9 months and intracranial control (IC) 3.4 months, respectively. Variables with significant influence on OS were Gross Tumour Volume (GTV) (p = 0.019), the biological eqivalent dose (calculated on a 2 Gy single dose, EQD2, α/β = 10) < and ≥ median of 39 Gy (p = 0.012), extracerebral activity of the primary tumour (p < 0.001) and the steroid uptake during hfSRT (p = 0.03). LC was significantly influenced by the EQD2, ≤ and > 35 Gy (p = 0.004) in both uni- and multivariate Cox regression analysis. Median LC was 14.9 months for EQD2 >35 Gy and 3.4 months for doses ≤35 Gy, respectively. Early treatment related side effects were usually mild. Nevertheless, patients with a EQD2 >35 Gy had higher rates of toxicity (31%) than ≤35 Gy (8.3%, p=0.026).</p> <p>Conclusion</p> <p>Comparing different dose concepts in hfSRT, a cumulative EQD2 of ≥35 Gy seems to be the most effective concept in patients with primary or recurrent limited brain metastases. Despite higher rates of only mild toxicity, this concept represents a safe treatment option.</p

    Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy.

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment's windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium-one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10-3 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, εT, is derived with precision of &lt;10-3 and trueness of &lt;3 × 10-3, being within and surpassing the actual requirements for KATRIN, respectively

    Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy

    No full text
    corecore