716 research outputs found
HMM based scenario generation for an investment optimisation problem
This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2012 Springer-Verlag.The Geometric Brownian motion (GBM) is a standard method for modelling financial time series. An important criticism of this method is that the parameters of the GBM are assumed to be constants; due to this fact, important features of the time series, like extreme behaviour or volatility clustering cannot be captured. We propose an approach by which the parameters of the GBM are able to switch between regimes, more precisely they are governed by a hidden Markov chain. Thus, we model the financial time series via a hidden Markov model (HMM) with a GBM in each state. Using this approach, we generate scenarios for a financial portfolio optimisation problem in which the portfolio CVaR is minimised. Numerical results are presented.This study was funded by NET ACE at OptiRisk Systems
Mean-risk models using two risk measures: A multi-objective approach
This paper proposes a model for portfolio optimisation, in which distributions are characterised and compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified confidence level. The problem is multi-objective and transformed into a single objective problem in which variance is minimised while constraints are imposed on the expected value and CVaR. In the case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular efficient solutions of the proposed model. In addition, the model has efficient solutions that are discarded by both mean-variance and mean-CVaR models, although they may improve the return distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return distribution of the chosen portfolios is presented
Processing second-order stochastic dominance models using cutting-plane representations
This is the post-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2011 Springer-VerlagSecond-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and RuszczyĆski (J Bank Finance 30:433â451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541â569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245â269, 2006) for ICCs, and by KĂŒnzi-Bay and Mayer (Comput Manage Sci 3:3â27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541â569, 2006).This study was funded by OTKA, Hungarian
National Fund for Scientific Research, project 47340; by Mobile Innovation Centre, Budapest University of Technology, project 2.2; Optirisk Systems, Uxbridge, UK and by BRIEF (Brunel University Research Innovation and Enterprise Fund)
Alaska Volcano Observatory Alert and Forecasting Timeliness: 1989â2017
The Alaska Volcano Observatory (AVO) monitors volcanoes in Alaska and issues notifications and warnings of volcanic unrest and eruption. We evaluate the timeliness and accuracy of eruption forecasts for 53 eruptions at 20 volcanoes, beginning with Mount Redoubt's 1989â1990 eruption. Successful forecasts are defined as those where AVO issued a formal warning before eruption onset. These warning notifications are now part of AVO's Aviation Color Code and Volcanic Alert Level. This analysis considers only the start of an eruption, although many eruptions have multiple phases of activity. For the 21 eruptions at volcanoes with functioning local seismic networks, AVO has high forecasting success at volcanoes with: >15 years repose intervals and magmatic eruptions (4 out of 4, 100%); or larger eruptions (Volcanic Explosivity Index (VEI) 3 or greater; 6 out of 10, 60%). Therefore, AVO successfully forecast all four monitored, longer-repose period, VEI 3+ eruptions: Redoubt 1989â1990 and 2009, Spurr 1992, and Augustine 2005â2006. For volcanoes with functioning seismic monitoring networks, success rates are lower for: volcanoes with shorter repose periods (3 out of 16, 19%); more mafic compositions (3 out of 18, 17%); or smaller eruption size (VEI 2 or less, 1 out of 11, 9%). These eruptions (Okmok, Pavlof, Veniaminof, and Shishaldin) often lack detectable precursory signals. For 32 eruptions at volcanoes without functioning local seismic networks, the forecasting success rate is much lower (2, 6%; Kasatochi 2008 and Shishaldin 2014). For remote volcanoes where the main hazard is to aviation, rapid detection is a goal in the absence of in situ monitoring. Eruption detection has improved in recent years, shown by a decrease in the time between eruption onset and notification. Even limited seismic monitoring can detect precursory activity at volcanoes with certain characteristics (intermediate composition, longer repose times, larger eruptions), but difficulty persists in detecting subtle precursory activity at frequently active volcanoes with more mafic compositions. This suggests that volcano-specific characteristics should be considered when designing monitoring programs and evaluating forecasting success. More proximally-located sensors and data types are likely needed to forecast eruptive activity at frequently-active, more mafic volcanoes that generally produce smaller eruptions
At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica
Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80uS). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.Catarina Magalhães, Mark I. Stevens, S. Craig Cary, Becky A. Ball, Bryan C. Storey, Diana H. Wall, Roman TƱrk and Ulrike Ruprech
Groundwater is a hidden global keystone ecosystem
Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a mediumâtoâhigh interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a scienceâpolicy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change
Covalent coupling of Spikeâs receptor binding domain to a multimeric carrier produces a high immune response against SARS-CoV-2
The receptor binding domain (RBD) of the Spike protein from SARS-CoV-2 is a promising candidate to develop effective COVID-19 vaccines since it can induce potent neutralizing antibodies. We have previously reported the highly efficient production of RBD in Pichia pastoris, which is structurally similar to the same protein produced in mammalian HEK-293T cells. In this work we designed an RBD multimer with the purpose of increasing its immunogenicity. We produced multimeric particles by a transpeptidation reaction between RBD expressed in P. pastoris and Lumazine Synthase from Brucella abortus (BLS), which is a highly immunogenic and very stable decameric 170 kDa protein. Such particles were used to vaccinate mice with two doses 30 days apart. When the particles ratio of RBD to BLS units was high (6â7 RBD molecules per BLS decamer in average), the humoral immune response was significantly higher than that elicited by RBD alone or by RBD-BLS particles with a lower RBD to BLS ratio (1â2 RBD molecules per BLS decamer). Remarkably, multimeric particles with a high number of RBD copies elicited a high titer of neutralizing IgGs. These results indicate that multimeric particles composed of RBD covalent coupled to BLS possess an advantageous architecture for antigen presentation to the immune system, and therefore enhancing RBD immunogenicity. Thus, multimeric RBD-BLS particles are promising candidates for a protein-based vaccine.Fil: Berguer, Paula Mercedes. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂmicas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂmicas de Buenos Aires; ArgentinaFil: Blaustein, MatĂas. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: Bredeston, Luis MarĂa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; ArgentinaFil: Craig, Patricio Oliver. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: D'alessio, Cecilia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: Elias, Fernanda. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Ciencia y TecnologĂa "Dr. CĂ©sar Milstein". FundaciĂłn Pablo CassarĂĄ. Instituto de Ciencia y TecnologĂa "Dr. CĂ©sar Milstein"; ArgentinaFil: FarrĂ©, Paola C.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: FernĂĄndez, Natalia Brenda. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: Gentili, Hernan Gustavo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: GĂĄndola, Yamila BelĂ©n. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; ArgentinaFil: Gasulla, Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigaciones del Medio Ambiente - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Centro de Investigaciones del Medio Ambiente; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; ArgentinaFil: Gudesblat, Gustavo Eduardo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; ArgentinaFil: Herrera, Maria Georgina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: Ibañez, Lorena ItatĂ. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica InorgĂĄnica, AnalĂtica y QuĂmica FĂsica; ArgentinaFil: Idrovo Hidalgo, Tommy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: Nadra, Alejandro Daniel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; ArgentinaFil: Noseda, Diego Gabriel. Universidad Nacional de San MartĂn. Instituto de Investigaciones BiotecnolĂłgicas. - Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BiotecnolĂłgicas; ArgentinaFil: Pavan, Carlos Humberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Pavan, Maria Florencia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; ArgentinaFil: Pignataro, MarĂa Florencia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; ArgentinaFil: Roman, Ernesto Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Ruberto, Lucas Adolfo Mauro. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Departamento de MicrobiologĂa, InmunologĂa y BiotecnologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de NanobiotecnologĂa. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de NanobiotecnologĂa; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. DirecciĂłn Nacional del AntĂĄrtico. Instituto AntĂĄrtico Argentino; ArgentinaFil: Rubinstein, Natalia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; ArgentinaFil: Sanchez Sanchez, Maria Victoria. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂa Experimental de Cuyo; ArgentinaFil: Santos, Javier. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, BiotecnologĂa y BiologĂa Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; ArgentinaFil: Wetzler, Diana Elena. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂn. Instituto de Investigaciones BiotecnolĂłgicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; ArgentinaFil: Zelada, Alicia Mercedes. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Biodiversidad y BiologĂa Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y BiologĂa Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FisiologĂa, BiologĂa Molecular y Celular. Laboratorio de FisiologĂa y BiologĂa Molecular; Argentin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
- âŠ